3 research outputs found

    Increasing the Robustness of Biometric Templates for Dynamic Signature Biometric Systems

    Full text link
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. R. Tolosana, R. Vera-Rodriguez, J. Ortega-Garcia and J. Fierrez, "Increasing the robustness of biometric templates for dynamic signature biometric systems," Security Technology (ICCST), 2015 International Carnahan Conference on, Taipei, 2015, pp. 229-234. doi: 10.1109/CCST.2015.7389687Due to the high deployment of devices such as smartphones and tablets and their increasing popularity in our society, the use of biometric traits in commercial and banking applications through these novel devices as an easy, quick and reliable way to perform payments is rapidly increasing. The handwritten signature is one of the most socially accepted biometric traits in these sectors due to the fact that it has been used in financial and legal transitions for centuries. In this paper we focus on dynamic signature verification systems. Nowadays, most of the state-of-the-art systems are based on extracting information contained in the X and Y spatial position coordinates of the signing process, which is stored in the biometric templates. However, it is critical to protect this sensible information of the users signatures against possible external attacks that would allow criminals to perform direct attacks to a biometric system or carry out high quality forgeries of the users signatures. Following this problem, the goal of this work is to study the performance of the system in two cases: first, an optimal time functions-based system taking into account the information related to X and Y coordinates and pressure, which is the common practice (i.e. Standard System). Second, we study an extreme case not considering information related to X, Y coordinates and their derivatives on the biometric system (i.e. Secure System), which would be a much more robust system against attacks, as this critical information would not be stored anywhere. The experimental work is carried out using e-BioSign database which makes use of 5 devices in total. The systems considered in this work are based on Dynamic Time Warping (DTW), an elastic measure over the selected time functions. Sequential Forward Features Selection (SFFS) is applied as a reliable way to obtain an optimal time functions vector over a development subset of users of the database. The results obtained over the evaluation subset of users of the database show a similar performance for both Standard and Secure Systems. Therefore, the use of a Secure System can be useful in some applications such as banking in order to avoid the lost of important user information against possible external attacks.This work was supported in part by the Project Bio-Shield (TEC2012-34881), in part by Cecabank e-BioFirma Contract, in part by the BEAT Project (FP7-SEC-284989) and in part by Catedra UAM-Telefonica

    Dynamic Biometric Signature - an Effective Alternative for Electronic Authentication

    Get PDF
    The use of dynamic biometric methods for the authentication of people provides significantly greater security than the use of the static ones. The variance of individual dynamic properties of a person, which protects biometric methods against attacks, can be the weak point of these methods at the same time.This paper summarizes the results of a long-term research, which shows that a DBS demonstrates practically absolute resistance to forging and that the stability of signatures provided by test subjects in various situations is high. Factors such as alcohol and stress have no influence on signature stability, either. The results of the experiments showed that the handwritten signature obtained through long practice and the consolidation of the dynamic stereotype, is so automated and stored so deep in the human brain, that its involuntary performance also allows other processes to take place in the cerebral cortex. The dynamic stereotype is composed of psychological, anatomical and motor characteristics of each person. It was also proven to be true that the use of different devices did not have a major impact on the stability of signatures, which is of importance in the case of a blanket deployment.The carried out experiments conclusively showed that the aspects that could have an impact on the stability of a signature did not manifest themselves in such a way that we could not trust these methods even used on commercially available devices. In the conclusion of the paper, the possible directions of research are suggested

    Dynamic Biometric Signature - an Effective Alternative for Electronic Authentication

    Get PDF
    The use of dynamic biometric methods for the authentication of people provides significantly greater security than the use of the static ones. The variance of individual dynamic properties of a person, which protects biometric methods against attacks, can be the weak point of these methods at the same time. This paper summarizes the results of a long-term research, which shows that a DBS demonstrates practically absolute resistance to forging and that the stability of signatures provided by test subjects in various situations is high. Factors such as alcohol and stress have no influence on signature stability, either. The results of the experiments showed that the handwritten signature obtained through long practice and the consolidation of the dynamic stereotype, is so automated and stored so deep in the human brain, that its involuntary performance also allows other processes to take place in the cerebral cortex. The dynamic stereotype is composed of psychological, anatomical and motor characteristics of each person. It was also proven to be true that the use of different devices did not have a major impact on the stability of signatures, which is of importance in the case of a blanket deployment. The carried out experiments conclusively showed that the aspects that could have an impact on the stability of a signature did not manifest themselves in such a way that we could not trust these methods even used on commercially available devices. In the conclusion of the paper, the possible directions of research are suggested
    corecore