215 research outputs found

    Increasing the Reliability of Adaptive Quadrature Using Explicit Interpolants

    Full text link
    We present two new adaptive quadrature routines. Both routines differ from previously published algorithms in many aspects, most significantly in how they represent the integrand, how they treat non-numerical values of the integrand, how they deal with improper divergent integrals and how they estimate the integration error. The main focus of these improvements is to increase the reliability of the algorithms without significantly impacting their efficiency. Both algorithms are implemented in Matlab and tested using both the "families" suggested by Lyness and Kaganove and the battery test used by Gander and Gautschi and Kahaner. They are shown to be more reliable, albeit in some cases less efficient, than other commonly-used adaptive integrators.Comment: 32 pages, submitted to ACM Transactions on Mathematical Softwar

    Chebfun and numerical quadrature

    Get PDF
    Chebfun is a Matlab-based software system that overloads Matlab’s discrete operations for vectors and matrices to analogous continuous operations for functions and operators. We begin by describing Chebfun’s fast capabilities for Clenshaw–Curtis and also Gauss–Legendre, –Jacobi, –Hermite, and –Laguerre quadrature, based on algorithms of Waldvogel and Glaser, Liu, and Rokhlin. Then we consider how such methods can be applied to quadrature problems including 2D integrals over rectangles, fractional derivatives and integrals, functions defined on unbounded intervals, and the fast computation of weights for barycentric interpolation

    On the equivalence between the cell-based smoothed finite element method and the virtual element method

    Get PDF
    We revisit the cell-based smoothed finite element method (SFEM) for quadrilateral elements and extend it to arbitrary polygons and polyhedrons in 2D and 3D, respectively. We highlight the similarity between the SFEM and the virtual element method (VEM). Based on the VEM, we propose a new stabilization approach to the SFEM when applied to arbitrary polygons and polyhedrons. The accuracy and the convergence properties of the SFEM are studied with a few benchmark problems in 2D and 3D linear elasticity. Later, the SFEM is combined with the scaled boundary finite element method to problems involving singularity within the framework of the linear elastic fracture mechanics in 2D

    Efficient Construction, Update and Downdate Of The Coefficients Of Interpolants Based On Polynomials Satisfying A Three-Term Recurrence Relation

    Full text link
    In this paper, we consider methods to compute the coefficients of interpolants relative to a basis of polynomials satisfying a three-term recurrence relation. Two new algorithms are presented: the first constructs the coefficients of the interpolation incrementally and can be used to update the coefficients whenever a nodes is added to or removed from the interpolation. The second algorithm, which constructs the interpolation coefficients by decomposing the Vandermonde-like matrix iteratively, can not be used to update or downdate an interpolation, yet is more numerically stable than the first algorithm and is more efficient when the coefficients of multiple interpolations are to be computed over the same set of nodes.Comment: 18 pages, submitted to the Journal of Scientific Computing

    Microstructure-based modeling of elastic functionally graded materials: One dimensional case

    Full text link
    Functionally graded materials (FGMs) are two-phase composites with continuously changing microstructure adapted to performance requirements. Traditionally, the overall behavior of FGMs has been determined using local averaging techniques or a given smooth variation of material properties. Although these models are computationally efficient, their validity and accuracy remain questionable, since a link with the underlying microstructure (including its randomness) is not clear. In this paper, we propose a modeling strategy for the linear elastic analysis of FGMs systematically based on a realistic microstructural model. The overall response of FGMs is addressed in the framework of stochastic Hashin-Shtrikman variational principles. To allow for the analysis of finite bodies, recently introduced discretization schemes based on the Finite Element Method and the Boundary Element Method are employed to obtain statistics of local fields. Representative numerical examples are presented to compare the performance and accuracy of both schemes. To gain insight into similarities and differences between these methods and to minimize technicalities, the analysis is performed in the one-dimensional setting.Comment: 33 pages, 14 figure
    • …
    corecore