2 research outputs found

    Index tables of finite fields and modular golomb rulers

    Get PDF
    For a Galois field GF(2 n ) defined by a primitive element α with minimal polynomial f, the index table contains in row i the coordinates of α i in the polynomial basis α n − 1, α n − 2,…, α, 1. Each column i in this table equals the m-sequence with characteristic polynomial f, shifted cyclically by some offset h i . In this paper we show that the set of the n shifts h i contains large subsets which are modular Golomb rulers modulo 2 n  − 1 (i.e. all the differences are different). Let D be the set of integers j such that the coefficient of x j in f is non-zero. We prove that the set H D of shifts corresponding to columns j ∈ D can be partitioned into two subsets (the columns in the left half of the table and the ones in the right half) each of which is a modular Golomb ruler. Based on this result and on computational data, we conjecture that in fact the whole set H D is a modular Golomb ruler. We give a polynomial time algorithm for deciding if given a subset of column positions, the corresponding shifts are a modular Golomb ruler. These results are applied to filter generators used in the design of stream ciphers. Golić recommends that in order to withstand his inversion attack, one of the design requirements should be that the inputs of the non-linear filtering function are taken from positions of a Fibonacci LFSR which form a Golomb ruler. We propose using a Galois LFSR instead and selecting positions such that the corresponding shifts form a modular Golomb ruler. This would allow for a larger number of inputs to be selected (roughly n/2 rather than 2n − − √ ) while still satisfying Golić’s requirement

    Applications of the Galois Model LFSR in Cryptography

    Get PDF
    The linear feedback shift-register is a widely used tool for generating cryptographic sequences. The properties of the Galois model discussed here offer many opportunities to improve the implementations that already exist. We explore the overall properties of the phases of the Galois model and conjecture a relation with modular Golomb rulers. This conjecture points to an efficient method for constructing non-linear filtering generators which fulfil Golic s design criteria in order to maximise protection against his inversion attack. We also produce a number of methods which can improve the rate of output of sequences by combining particular distinct phases of smaller elementary sequences
    corecore