

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288381479?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Index Tables of Finite Fields and Modular
Golomb Rulers

Ana Sălăgean, David Gardner, and Raphael Phan

Loughborough University, UK
Email: {A.M.Salagean, D.Gardner2, R.Phan}@lboro.ac.uk

Abstract. For a Galois field GF(2n) defined by a primitive element α
with minimal polynomial f , the index table contains in row i the coor-
dinates of αi in the polynomial basis αn−1, αn−2, . . . , α, 1. Each column
i in this table equals the m-sequence with characteristic polynomial f ,
shifted cyclically by some offset hi.

In this paper we show that the set of the n shifts hi contains large subsets
which are modular Golomb rulers modulo 2n − 1 (i.e. all the differences
are different). Let D be the set of integers j such that the coefficient of
xj in f is non-zero. We prove that the set HD of shifts corresponding to
columns j ∈ D can be partitioned into two subsets (the columns in the
left half of the table and the ones in the right half) each of which is a
modular Golomb ruler. Based on this result and on computational data,
we conjecture that in fact the whole set HD is a modular Golomb ruler.

We give a polynomial time algorithm for deciding if given a subset of
column positions, the corresponding shifts are a modular Golomb ruler.
These results are applied to filter generators used in the design of stream
ciphers. Golić recommends that in order to withstand his inversion at-
tack, one of the design requirements should be that the inputs of the non-
linear filtering function are taken from positions of a Fibonacci LFSR
which form a Golomb ruler. We propose using a Galois LFSR instead
and selecting positions such that the corresponding shifts form a mod-
ular Golomb ruler. This would allow for a larger number of inputs to
be selected (roughly n/2 rather than

√
2n) while still satisfying Golić’s

requirement.

1 Preliminaries

First we recall the definitions of linear recurrent sequences and m-sequences.

Definition 1. An infinite sequence s̃ = s0, s1, . . . with elements in a field K is
called a linear recurrent sequence if there exists a relation of the form si+n =
cn−1si+n−1+· · ·+c1si+1+c0si for all i = 0, 1, . . ., where c0, c1, . . . , cn−1 ∈ K are
constants. We associate to it a characteristic polynomial f(x) = xn+cn−1x

n−1+
· · ·+c1x+c0. If n is minimal for the given sequence we call n the linear complexity
of the sequence. A sequence which has a primitive polynomial as characteristic
polynomial is called an m-sequence.

Recall that a binary m-sequence of linear complexity n has period 2n − 1.
We now introduce a notation for (cyclic) shifts of sequences:

Definition 2. Given a sequence s̃ = s0, s1, . . ., we denote by s̃ ¿ k the sequence
obtained by shifting s̃ by k positions to the left, i.e. the sequence sk, sk+1,

If s̃ is periodic with period N we denote by s̃ À k the sequence obtained by
cyclicly shifting s̃ by k positions to the right, i.e. the sequence sN−k, sN−k+1, . . . ,
sN−1, s0, s1,

Obviously (s̃ À k) = (s̃ ¿ (N − k)).
Next we recall a few facts about the construction of a finite field with 2n

elements, denoted GF(2n).
Throughout the paper we fix f = xn+cn−1x

n−1+· · ·+c1x+c0 ∈ GF(2)[x] to
be a primitive polynomial of degree n (hence c0 = 1) and denote by α a root of
f . We define GF(2n) as GF(2)[x]/〈f〉, or equivalently as the algebraic extension
field of GF(2) by α.

The elements of GF(2n) can be represented in different ways; we are inter-
ested in the two most common representations: firstly we have the representation
in the polynomial basis αn−1, αn−2, . . . , α, 1, whereby

GF(2n) = {rn−1α
n−1 + rn−2α

n−2 + · · ·+ r1α + r0|r0, . . . , rn−1 ∈ GF(2)}.
Secondly we have the representation as powers of the primitive root α, whereby

GF(2n) = {0, 1, α, α2, . . . , α2n−2}.
Since the first representation is convenient for addition and the second is con-
venient for multiplication (and multiplicative inverse), implementations often
use lookup tables for conversion between the two representations, also called
log/antilog tables or index tables. When n is large however, such tables can no
longer be computed/stored due to their exponential size.

Converting from a power of α to the polynomial basis representation is rela-
tively easy (polynomial time). However the reverse problem (given rn−1, . . . , r0

find i such that αi = rn−1α
n−1 + rn−2α

n−2 + · · · + r1α + r0) is difficult and it
is known as the Discrete Logarithm Problem (DLP) in GF(2n).

We will study the index table that gives the representation of 1, α, α2, . . . ,
α2n−2 in the polynomial basis. That is, if we denote

αi = r
(n−1)
i αn−1 + r

(n−2)
i αn−2 + · · ·+ r

(1)
i α + r

(0)
i ,

the index table is the 2n − 1 by n matrix whose rows are indexed from 0 to
2n−2 and the i-th row is the vector (r(n−1)

i , r
(n−2)
i , . . . , r

(1)
i , r

(0)
i). Note that the

rows of this table are precisely all the n-bit vectors except the all-zero one. We
will denote column j by r̃(j) and it will be convenient to view it as a periodic
sequence of period 2n − 1.

It is known, and not difficult to prove, that each sequence r̃(j) (being the
image under a projection homomorphism of the sequence 1, α, α2, . . .) has char-
acteristic polynomial f . Since f is primitive, r̃(j) is an m-sequence. For different
values of j we obtain different cyclic shifts of this same m-sequence. We will
choose r̃(n−1) as a reference point.

Definition 3. For j = 0, . . . , n − 1 we denote by hj the integer modulo 2n − 1
such that r̃(j) = (r̃(n−1) À hj). We denote by H the set {hn−1, hn−2, . . . , h1, h0}.

Determining H seems difficult for large fields where the index table cannot
be computed in full. This problem was considered by Blackburn in [1]. In [1,
Definition 3] he defines a set

∑
(f) that would correspond to H∪{hi−hj |hi, hj ∈

H}, and searches for suitable values in this set in order to increase the rate of
output of m-sequences by interleaving. In the next section we will prove certain
properties of the elements of H without explicitly computing them.

It will be convenient to use the trace representation for m-sequences:

Theorem 1. [5, Theorem 6.21] The elements of an m-sequence s̃ = s0, s1, . . .

over GF(2) can be expressed as si = Tr(aαi) =
n−1∑
j=0

a2j

(α2j

)i, where α is a

primitive root of the primitive characteristic polynomial of s and a ∈ GF(2n),
a 6= 0, is a constant, uniquely determined by the first n elements of the sequence.

Since we will work with a fixed primitive polynomial f , it is only the constant a
in the theorem above that determines which of the 2n−1 shifts of the m-sequence
we are dealing with. It is therefore convenient to introduce the following notation:

Definition 4. We define Seqα(a) (also denoted Seq(a) if α is clear from the
context) as the sequence s̃ whose i-th element is represented by

si = Tr(aαi) =
n−1∑

j=0

a2j

(α2j

)i. (1)

Seq is linear, i.e. for any a, b ∈ GF(2n) and c ∈ GF(2) we have:

Seq(a) + Seq(b) = Seq(a + b) (2)
c Seq(a) = Seq(ca) (3)

The effect of shifting on sequences Seq(a) can be described as follows:

Lemma 1. Let a, a1, a2 ∈ GF (2n)∗ and h an integer. Then:
(i) (Seq(a) ¿ h) = Seq(aαh) and (Seq(a) À h) = Seq(aα−h)
(ii) Seq(a2) = (Seq(a1) À h) where h is the discrete logarithm of a1a

−1
2 .

Proof. (i) The i-th element of (Seq(a) ¿ h) is the (i+h)− th element of Seq(a),

si+h =
n−1∑

j=0

a2j

(α2j

)i+h =
n−1∑

j=0

(aαh)2
j

(α2j

)i

which is indeed the i-th element of the sequence Seq(aαh) as in (1).
(ii) Write Seq(a2) = Seq(a1a2a

−1
1) = Seq(a1α

−h) and then use (i). ut
The following notion appears in the literature in different equivalent forms

and under different names: Golomb ruler, finite Sidon set, full positive difference
set, etc.

Definition 5. A Golomb ruler of order m is a set of integers {b0, . . . , bm−1}
with b0 < b1 < · · · < bm−1, such that all the positive pairwise differences of
elements are unique,i.e. bj − bi 6= bl − bk, for all (i, j) 6= (k, l), i < j and k < l.

A modular Golomb ruler modulo N is a set {b0, . . . , bm−1} of numbers modulo
N such that all the pairwise differences of elements are unique modulo N , i.e.
(bj − bi) mod N 6= (bl − bk) mod N , for all (i, j) 6= (k, l).

There is no general construction for optimal (modular) Golomb rulers (i.e. min-
imum bm−1 − b0 for given order m); tables for the currently known optimal
values are available see [4], the Online Encyclopedia of Integer Sequences and
the references therein. The following is immediate:

Lemma 2. Let B = {b0, . . . , bm−1} with 0 ≤ b0 < b1 < · · · < bm−1 < N be
a Golomb ruler. If bm−1 − b0 < N/2 then B is also a modular Golomb ruler
modulo N .

Proof. For all i < j, we consider a first set of differences as the differences
bj − bi. These are all different because B is a Golomb ruler. Moreover, bj − bi ≤
bm−1− b0 < N/2. The second set of differences bi− bj = N − (bj− bi) > N/2 are
all different among themselves, and also different from the first set of differences.

ut

2 Modular Golomb rulers within the set of shifts of the
index table of a Galois ring

In this section we show that certain non-trivial subsets of H (where H is de-
fined in Definition 3) are modular Golomb rulers. Moreover, we show that for
suitable choices of the primitive polynomial f these subsets contain about half
the elements of H.

For a start, all hj are different. (If we assumed there exist hi = hj then in
each row of the index table entries i and j are identical. However, this is not
possible as the table contains as rows all the possible binary vectors except the
all-zero one.) As an easy consequence hj − hi 6= hk − hi for all j 6= k.

Lemma 3. r̃(0) = (r̃(n−1) À 1) and r̃(j) = ((r̃(j−1) + cj r̃
(n−1)) À 1) for 1 ≤

j ≤ n− 1.

Proof.

αi+1 = r
(n−1)
i+1 αn−1 + r

(n−2)
i+1 αn−2 + · · ·+ r

(1)
i+1α + r

(0)
i+1 = ααi

= α(r(n−1)
i αn−1 + r

(n−2)
i αn−2 + · · ·+ r

(1)
i α + r

(0)
i)

= r
(n−1)
i αn + r

(n−2)
i αn−1 + · · ·+ r

(1)
i α2 + r

(0)
i α

= r
(n−1)
i (cn−1α

n−1 + . . . + c1α + c0) + r
(n−2)
i αn−1 + · · ·+ r

(1)
i α2 + r

(0)
i α

= (r(n−1)
i cn−1 + r

(n−2)
i)αn−1 + · · ·+ (r(n−1)

i c1 + r
(0)
i)α + (r(n−1)

i c0).

Since αn−1, αn−2, . . . , α, 1 is a vector space basis, we have r
(j)
i+1 = r

(n−1)
i cj+r

(j−1)
i

and r
(0)
i+1 = r

(n−1)
i c0. ut

Corollary 1. (i) hn−1 = 0, h0 = 1 and hj = hj−1 +1 for all j for which cj = 0.
(ii) If f = xn + xj + 1 is a trinomial, then H = {0, 2n − 2, 2n − 3, . . . , 2n − (n−
j), j, j − 1, . . . , 3, 2, 1}
Hence for determining H it suffices to determine those hj for which cj 6= 0.

Let a be such that r̃(n−1) = Seq(a). The value of a can be computed from
the initial terms of r̃(n−1) but this will not be necessary for our purposes.

Theorem 2. Let zj = cj+1 + cj+2α + · · ·+ cn−1α
n−j−2 + αn−j−1. Then:

(i) z0, z1, . . . , zn−1 form a vector space basis for GF(2n).
(ii) r̃(j) = Seq(azj), i.e. α−hj = zj for all j = 0, . . . n− 1.
(iii) hj − hi equals the discrete logarithm of ziz

−1
j .

(iv) If j is such that cj 6= 0 then hj = hj−1 + 1− h where h equals the discrete
logarithm of 1 + z−1

j−1.

Proof. For (i), note that the zj have different degrees. The proof of (ii) is by
induction on j using Lemmas 1 and 3 as well as the linearity of Seq, i.e. equations
(2) and (3). For (iii), write αhj−hi = α−hiαhj = ziz

−1
j . Finally, (iv) is a particular

case of (iii). ut
Determining H is therefore equivalent to solving the particular instances of

the DLP problem α−hj = zj , for j = 0, 1, . . . , n − 1 or alternatively solving
particular instances of the State-based DLP as defined by Giuliani and Gong
in [2, Definition 7]. Namely, given the n initial terms of r̃(j), determine the
starting position hj where the n terms 0,0,. . . ,0,1 appear in r̃(j). It is shown
in [2, Theorem 3] that the State-based DLP is equivalent to the DLP.

Theorem 3. Let D ⊆ {0, 1, . . . , n−1} be a set of indices and HD = {hi|i ∈ D}
be the set of corresponding values of shifts. The set HD is a modular Golomb
ruler (modulo 2n− 1) if and only if for all distinct pairs (i, j), (k, l) of elements
in D with i < j, k < l, j − i ≤ l − k we have

ziz
−1
j 6= zkz−1

l (4)

ziz
−1
j 6= z−1

k zl (5)

Proof. Use Theorem 2(iii) and Definition 5. ut
Based on the theorem above, Algorithm 1 decides whether HD is a modular
Golomb ruler for a given D.

Theorem 4. Algorithm 1 has a time complexity of O(n4) and needs O(n3) extra
memory space.

Proof. Computing the polynomial basis representation of ziz
−1
j and of z−1

i zj

takes O(n2) steps. The list L has at most n(n − 1) elements of n bits each,
i.e. a total of O(n3) bits. With an appropriate data structure, we can maintain
the elements of L in lexicographic order and we do binary search to find out
if an element is in the list or to insert a new element. We would then need
log(n2) = 2 log n list element comparisons, and each comparison takes n steps.
Hence all operations inside the two nested for loops take O(n2) steps. ut

Algorithm 1 GolombRulerDecision(f, D)
Input: f a primitive polynomial of degree n; D ⊆ {0, 1, . . . , n− 1}.
Output: True/False signifying whether {hj |j ∈ D} is a modular Golomb ruler.
begin
Initialise L to the empty list

5: for i = 0, 1, . . . , n− 1 do
for j = i + 1, . . . , n− 1 do

Compute the polynomial basis representation of ziz
−1
j and of z−1

i zj

if (ziz
−1
j is in L) or (z−1

i zj is in L) then
return(False)

10: else
Insert ziz

−1
j and z−1

i zj in L
end if

end for
end for
return(True)

15: end

For certain subsets of H we will be able to show that they are always modular
Golomb rulers. Intuitively, runs of zero coefficients in f correspond to runs of
consecutive integers in the corresponding shifts hj by Corollary 1(i). In such
regions of consecutive integers we can only choose very small subsets which are
Golomb rulers. A much more promising source of Golomb ruler subsets comes
from those hj for which cj 6= 0.

Next we will gather sufficient conditions for (4) and (5) to hold.

Lemma 4. We use the notations of Theorem 3 and assume ci, cj , ck, cl are all
non-zero.
Each of the following conditions is sufficient for (4) to be satisfied:
(i) j − i = l − k
(ii) i + l ≤ n
(iii) j + k ≥ n− 1
Each of the following conditions is sufficient for (5) to be satisfied:
(iv) j + l ≤ n
(v) i + k ≥ n− 1.

Proof. We write zi = α−(i+1)vi where vi = 1+c1α+c2α
2 + . . .+ciα

i. We denote
by next(i) the smallest index u > i such that cu 6= 0. Note that next(i) ≤ j.

The general idea of these proofs is that we assume for a contradiction that
equality holds in (4) or in (5), respectively. We then simplify this equation to
the point that only powers of α between α0 = 1 and αn−1 appear. Since this
is a vector space basis of GF(2n), an equality holds if and only if for all i the
coefficients of the corresponding αi are identical on the two sides of the equal-
ity. We then prove that this is not the case for our equality, obtaining thus a
contradiction.

(i) Note that in this case we cannot have i = k, because j − i = l − k would
then imply j = l and therefore (i, j) = (k, l). Assuming equality in (4) and using

j− i = l−k, this simplifies to vkvj = vivl. Writing vj = vi +αi+1(ci+1 + ci+2α+
· · ·+ cjα

j−i−1) and similarly for vl the equality further simplifies to either

vk(ci+1 + ci+2α + · · ·+ cjα
j−i−1) = αk−ivi(ck+1 + ck+2α + · · ·+ clα

l−k−1)

for the case i < k, or

αi−kvk(ci+1 + ci+2α + · · ·+ cjα
j−i−1) = vi(ck+1 + ck+2α + · · ·+ clα

l−k−1)

for the case i > k. In the case of i < k, on the l.h.s. the smallest power of
α is next(i) and the highest is l − 1 and on the r.h.s. the smallest power is
k − i + next(k) and the highest is l − 1 . Since all powers of α are below n,
all the corresponding coefficients of the powers of α must coincide on the l.h.s
and r.h.s. This implies next(i) = k − i + next(k), i.e. i + next(i) = k + next(k).
However, one can see that this is a contradiction because i < k, which due to
the way we defined next implies next(i) ≤ k < next(k). The case i > k leads to
a contradiction in a similar way.

(ii) We may assume l − k > j − i, as the case l − k = j − i was covered by
(i). Assuming equality in (4) we obtain α(l−k)−(j−i)vjvk = vlvi. On the l.h.s. the
lowest power of α is (l − k) − (j − i) > 0 and the highest is l + i. On the r.h.s.
the lowest is 0 and the highest is l + i. The highest powers on both sides cancel
out, leaving only powers of at most l + i− 1 ≤ n− 1. Since all powers of α are
below n, all the corresponding coefficients of the powers of α must coincide on
the l.h.s and r.h.s. However this cannot be the case as the lowest powers with a
non-zero coefficient are different on the two sides.

(iii) Again we may assume l− k > j− i, as the case l− k = j− i was covered
by (i). Note i+ l > j +k ≥ n−1. Assuming equality in (4) gives zizl = zjzk. The
powers of α range from some integer ≥ 0 to 2(n−1)− (i+ l) < n−1 on the l.h.s.
and from some integer ≥ 0 to 2(n−1)−(j +k) ≤ n−1 on the r.h.s.. That means
the coefficients must be identical, hence 2(n− 1)− (i + l) = 2(n− 1)− (j + k).
But that implies l − k = j − i, which is not true.

(iv) Assuming equality in (5) gives vjvl = αl−k+j−ivivk. Again, the powers
of α range on the l.h.s. from 0 to j + l and on the r.h.s from l − k + j − i > 0
to j + l, with the highest ones canceling out and leaving powers of at most
j + l− 1 ≤ n− 1. The range needs to be the same on both sides. Contradiction.

(v) Note j+ l > i+k ≥ n−1. Assuming equality in (5) gives zjzl = zizk. The
powers of α range from some integer ≥ 0 to 2(n−1)−(j + l) < n−1 on the l.h.s.
and from some integer ≥ 0 to 2(n− 1)− (i + k) ≤ n− 1 on the r.h.s.. Therefore
the coefficients must be identical, which is not true as 2(n − 1) − (j + l) <
2(n− 1)− (i + k). ut
Theorem 5. Let D = {i|ci 6= 0} and let D1 = {i ∈ D, i ≤ n

2 } and D2 = {i ∈
D, i ≥ n−1

2 }. Then HD1 = {hi|i ∈ D1} and HD2 = {hi|i ∈ D2} are modular
Golomb rulers (modulo 2n − 1).

Proof. For HD1 all indices satisfy conditions (ii) and (iv) in Lemma 4. For HD2

all indices satisfy conditions (iii) and (v) in Lemma 4. ut

Conjecture 1. HD = {hi|ci 6= 0} is a modular Golomb ruler (modulo 2n − 1).

In view of Lemma 4, the missing cases for proving the conjecture are: showing
that (4) holds when j + k < n− 1 and it also holds when n < i+ l; showing that
(5) holds when i + k < n − 1 and also when n < j + l. The experiments in the
following section support this conjecture. Moreover, they allow us to state:

Proposition 1. For all primitive polynomials f of degree 23 or less, HD =
{hi|ci 6= 0} is a modular Golomb ruler (modulo 2n − 1).

Finally, note that these results mean that H can have very large subsets
which are modular Golomb rulers. One of the subsets in Theorem 5 will have at
least d(wt(f)−1)/2e elements, where wt(f) is the Hamming weight of f (number
of non-zero coefficients). If Conjecture 1 is true for a particular f (and this can
be checked by Algorithm 1), the subset obtained is even larger, namely it has
wt(f)− 1 elements.

For many, but not all n, there exists a primitive polynomial of weight n for n
odd or of weight n−1 for n even. It seems likely that for all n there are primitive
polynomials of weight close to n, and therefore H contains in these cases a
modular Golomb ruler subset consisting of almost the whole H (if Conjecture 1
is true). Moreover, it seems likely that for any n there are primitive polynomials
f for which all or almost all coefficients in the lower half of f are non-zero, and
therefore H contains in these cases a modular Golomb ruler subset consisting of
half or almost half of the elements of H (by Theorem 5, so regardless whether
Conjecture 1 is true).

3 Experiments

Brute force experimentation was performed on all Galois fields GF(2n) with n
from 2 to 23, examining all the different primitive polynomials for each n. In
each case the full index table was produced, and the shifts hn−1, hn−2, . . . , h1, h0

were computed by direct examination of the table. Some examples are described
in Table 1, with the primitive polynomial f represented as 1cn−1cn−2 . . . c11. It
was then verified (using Definition 5) that removing those hj for which cj = 0
(shown in brackets in Table 1) leaves indeed a subset which is a modular Golomb
ruler. Thus it was verified that Conjecture 1 holds for all primitive polynomials
up to degree n = 23. For 24 ≤ n ≤ 29 we ran Algorithm 1 for all primitive
polynomials f with wt(f) ≥ n− 1 and again Conjecture 1 was verified.

4 An Application to Galois LFSRs and filter generators

Linear recurrent sequences are often generated in practice by hardware devices
called Linear Feedback Shift Registers (LFSR). There are two common types of
LFSR, usually called the Fibonacci LFSR and the Galois LFSR. We recall these
notions here. The registers of a Fibonacci LFSR of length n will be denoted by
Q0, Q1, . . . Qn−1. The content of register Qj at time i will be denoted q

(j)
i and

Table 1. A selection of primitive polynomials f and the corresponding shifts H.

n = 7, f = 11111101, wt(f) = 7,
H = {0, 18, 119, 54, 39, (2), 1}
n = 9, f = 1111000111, wt(f) = 7,
H = {0, 326, 461, (467), (466), (465), 464, 328, 1}
n = 15, f = 1100000111100111, wt(f) = 9,
H = {0, (3971), (3970), (3969), (3968), (3967), 3966,
30091, 12457, 28329, (24624), (24623), 24622, 3973, 1}
n = 21, f = 1010101011110110001101, wt(f) = 13,
H = {(0), 2097150, (1796558), 1796557, (1333708),
1333707, (1195372), 1195371, 1508706, 363026, 820032,
(1536625), 1536624, 543838, (134466), (134465), (134464),
134463, 1796561, (2), 1}
n = 23, f = 111111110111111111111111, wt(f) = 23,
H = {0, 873419, 3430060, 2620257, 1534122, 7733539,
3311431, (6113933), 6113932, 7496295, 3308273, 7951902,
226119, 3941673, 4712702, 6113941, 3311438, 7733545,
1534127, 2620261, 3430063, 873421, 1}

the contents of all the registers at time i are called the state at time i. The initial
state is the state at time 0. The sequence q̃(j) consists of the values of register
Qj in time, i.e. q

(j)
0 , q

(j)
1 , Similarly for a Galois LFSR we denote the registers

by Rn−1, Rn−2, . . . , R0 and the contents of the register Rj in time by r̃(j).

Definition 6. A Fibonacci LFSR of length n (see Fig. 1) with characteristic
polynomial f(x) = xn + cn−1x

n−1 + · · ·+ c1x+ c0 will update itself at each clock
interval i according to the following

q
(j)
i+1 =

{
cn−1q

(n−1)
i + · · ·+ c1q

(1)
i + c0q

(0)
i if j = n− 1

q
(j+1)
i otherwise.

Q
n-2Q1Q0

c
n-2c1 c

n-1c0

Q
n-1

...

...

Fig. 1. A Fibonacci style LFSR

Definition 7. A Galois LFSR of length n (see Fig. 2) with characteristic poly-
nomial f(x) = xn + cn−1x

n−1 + · · · + c1x + c0 will update itself at each clock
interval i according to the following

r
(j)
i+1 =

{
c0r

(n−1)
i if j = 0

r
(j−1)
i + cjr

(n−1)
i otherwise.

R
n-2 R1 R0

c
n-2 c1c

n-1 c0

R
n-1

...

...

Fig. 2. A Galois style LFSR

The output of the Fibonacci LFSR is taken from register Q0, i.e. equals q̃(0);
the output of the Galois LFSR is taken from register Rn−1, i.e. equals r̃(n−1). It is
known that a Fibonacci LFSR and a Galois LFSR with the same characteristic
polynomial will produce the same output sequence provided the initial states
are suitably chosen. We now fix the characteristic polynomial f to be the same
primitive polynomial in both LFSRs, so both produce the same m-sequence.

In the Fibonacci LFSR each sequence representing the content of a register
is equal to the neighbouring sequence shifted by one position. More precisely,
q̃(j) = (q̃(j−1) ¿ 1). Taking the output sequence q̃(0) as reference, q̃(j) = (q̃(0) ¿
j) = (q̃(0) À (2n − 1− j)).

For a Galois LFSR with a primitive polynomial f which has a primitive
root α, the state (r(n−1)

i , r
(n−2)
i , . . . , r

(0)
i) at time i can be interpreted as the

coefficients of the element r
(n−1)
i αn−1 + r

(n−2)
i αn−2 + · · ·+ r

(0)
i of GF(2n). Then

the state at time i will be αi+k where k is such that αk corresponds to the initial
state. We can see now that each sequence r̃(j) coincides with the sequence r̃(j)

defined in Section 1, shifted by k positions to the left. We are only interested in
the relative shifts of different r̃(j), hence the shifts by k will cancel out. Taking
the output sequence r̃(n−1) as reference point, the other sequences r̃(j) can be
obtained by shifting r̃(n−1) to the right by hj positions, where hj is as defined
in Definition 3.

For designing stream ciphers, one of the classical constructions for the key-
stream generator is the filter generator (see Fig. 3). It consists of a binary LFSR
(usually Fibonacci LFSR) generating an m-sequence of period 2n − 1 and a
boolean function g : GF(2)k → GF(2) with k ≤ n, called a non-linear filtering
function. The output of the generator is obtained by applying the function g to
k selected registers of the LFSR, say j1, j2, . . . , jk. Hence the output at time i

equals g(q(j1)
i , q

(j2)
i , . . . , q

(jk)
i).

R
n-2 R1 R0

d
n-2 d1d

n-1 d0

R
n-1

...

nonlinear filtering function

Fig. 3. An LFSR fed NFF

There is a large number of results concerning the recommended choice of
the function g and the “tapped” positions j1, j2, . . . , jk in order to avoid various
cryptanalysis attacks. Here we are interested in the results of Golić [3]. In [3, The-
orem 2], Golić gives a sufficient condition for a non-linear filtering function g to
produce a purely random output provided its inputs come from a purely random
sequence z̃ in such a way that the output at time i equals g(zi−j1 , zi−j2 , . . . , zi−jk

)
for fixed tapping positions j1, . . . , jk. In our notation, the input of g at time i
consists of the i-th elements of the sequences (z̃ À j1), (z̃ À j2), . . . , (z̃ À jk).
The sufficient condition is that g is linear in the first or last variable. Golić
conjectured the condition was also necessary, see [6] for further results on this
conjecture. Based on this result, Golić introduces an inversion attack for gen-
erators which use a Fibonacci LFSR and tapping position j1, . . . , jk together
with a non-linear filtering function which is linear in the first or last variable. He
recommends that for withstanding this attack one design criterion is that the
tapped positions of the Fibonacci LFSR should form a full positive difference
set (Golomb ruler). Note that since the tapped positions are in the range 0 to
n − 1, they also form a modular Golomb ruler modulo 2n − 1, by Lemma 2, as
n− 1 < (2n − 1)/2 for all n ≥ 2.

Golić’s results still apply if we use an m-sequence of complexity n and we
buffer t terms for some t ≥ n; we can then tap any positions j1, j2, . . . , jk provided
maxu=1,...,k(ju)−minu=1,...,k(ju) ≤ t. We suspect that in that case Golić’s design
criterion would need to be enhanced, requiring that the tapped positions be a
modular Golomb ruler modulo 2n − 1 (the period of the m-sequence) rather
than simply a Golomb ruler. The two are no longer equivalent if the range
maxu=1,...,k(ju)−minu=1,...,k(ju) exceeds 2n−1− 1. Buffering t > n terms would
allow a larger number of positions to be tapped while still satisfying Golić’s
design criterion. This would come at the cost of extra storage.

We propose constructing a filter generator that uses a Galois LFSR with a
dense primitive polynomial f . We then select positions D = {i1, i2, . . . , ik} ⊆
{0, 1, . . . , n − 1} as inputs to the filtering function in such a way that
{hi1 , hi2 , . . . , hik

} is a modular Golomb ruler. The filter generator thus con-
structed would be equivalent to tapping positions j1 = hi1 , j2 = hi2 , . . . , jk = hik

of a buffered section of length t = minl=1,...,k(maxu=1,...,k((jl−ju) mod (2n−1))
of the m-sequence, with the advantage that we do not need to actually buffer
such a long section, we are only using the n memory registers of the Galois

LFSR. This construction would satisfy Golić’s design criterion. It remains to be
seen whether it would be susceptible to other forms of attack.

According to the discussion at the end of Section 2, we can choose D = {i|ci 6=
0} and check whether Conjecture 1 is true in this case by running Algorithm 1.
If the answer is positive, we have k = wt(f) − 1, which can be very close to n
for suitably chosen f . If Algorithm 1 returns a negative result, we can still chose
D = {i|ci 6= 0, i ≤ n/2} and HD is guaranteed to be a modular Golomb ruler
by Theorem 5. For suitably chosen f we can then have k equal, or lower but
very close to bn/2c + 1. If we had to choose inputs from a Fibonacci LFSR of
length n so that they are a Golomb ruler, the well known bound n ≥ k(k− 1)/2
would mean k <

√
2n + 1, hence a much smaller number of inputs are available.

Equivalently, if we required some fixed number k of inputs, we would need a much
larger length n for the Fibonacci LFSR, namely more than k(k−1)/2 compared
to approximately 2k for the Galois LFSR. The following example illustrates this:

Example 1. The first example in Table 1, after removing the elements in brack-
ets, produces a modular Golomb ruler of order k = 6. A Fibonacci LFSR of same
length n = 7 would allow us to produce a Golomb ruler (which by Lemma 2
would also be a modular Golomb ruler modulo 2n − 1) of only k = 4 elements.
For k = 6 elements we would need a Fibonacci LFSR of length n = 17 (see [4]).

The last example in Table 1 is a Galois LFSR of length n = 23 and after
removing the elements in brackets, produces a modular Golomb ruler of order
k = 22. A Fibonacci LFSR of same length n = 23 will allow us to produce a
Golomb ruler (which by Lemma 2 would also be a modular Golomb ruler modulo
2n − 1) of order only k = 6. For order k = 22 we would need a Fibonacci LFSR
of length n = 356 (see [4]).

Acknowledgements We would like to thank Simon Blackburn for a useful
discussion regarding his paper [1].

References

1. Blackburn, S.R.: Increasing the Rate of Output of m-Sequences. Information Pro-
cessing Letters 51, 73–77 (1994)

2. Giuliani, K. and Gong, G.: New LFSR-Based Cryptosystems and the Trace Discrete
Log Problem (trace-DLP). In: Helleseth, T., Sarwate, D., Song, H., Yang, K. (eds.)
Sequences and Their Applications - SETA 2004. LNCS, vol. 3486, pp. 298–312.
Springer, Berlin / Heidelberg (2005)

3. Golić, J.D.: On the Security of Nonlinear Filter Generators. In: Gollmann, D. (ed.)
Fast Software Encryption 1996. LNCS, vol. 1039, pp. 173–188. Springer, Berlin /
Heidelberg (1996)

4. Graham, R.L. and Sloane, N.J.A.: On Additive Bases and Harmonious Graphs.
Siam Journal on Algebraic and Discrete Methods 1, 382–404 (1980).

5. Lidl, R. and Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press (1994)

6. Smyshlyaev, S.V.: Perfectly Balanced Boolean Functions and Golić Conjecture.
Journal of Cryptology. 1–20 (2011)

