3 research outputs found

    Application of Improved Collaborative Filtering in the Recommendation of E-commerce Commodities

    Get PDF
    Problems such as low recommendation precision and efficiency often exist in traditional collaborative filtering because of the huge basic data volume. In order to solve these problems, we proposed a new algorithm which combines collaborative filtering and support vector machine (SVM). Different with traditional collaborative filtering, we used SVM to classify commodities into positive and negative feedbacks. Then we selected the commodities that have positive feedback to calculate the comprehensive grades of marks and comments. After that, we build SVM-based collaborative filtering algorithm. Experiments on Taobao data (a Chinese online shopping website owned by Alibaba) showed that the algorithm has good recommendation precision and recommendation efficiency, thus having certain practical value in the E-commerce industry

    Combining Rating and Review Data by Initializing Latent Factor Models with Topic Models for Top-N Recommendation

    Get PDF
    The 14th ACM Recommender Systems conference (RecSys '20), Virtual Event, 22-26 September 2020Nowadays we commonly have multiple sources of data associated with items. Users may provide numerical ratings, or implicit interactions, but may also provide textual reviews. Although many algorithms have been proposed to jointly learn a model over both interactions and textual data, there is room to improve the many factorization models that are proven to work well on interactions data, but are not designed to exploit textual information. Our focus in this work is to propose a simple, yet easily applicable and effective, method to incorporate review data into such factorization models. In particular, we propose to build the user and item embeddings within the topic space of a topic model learned from the review data. This has several advantages: we observe that initializing the user and item embeddings in topic space leads to faster convergence of the factorization algorithm to a model that out-performs models initialized randomly, or with other state-of-the-art initialization strategies. Moreover, constraining user and item factors to topic space allows for the learning of an interpretable model that users can visualise.Science Foundation IrelandInsight Research Centre2020-10-06 JG: PDF replaced with correct versio
    corecore