717 research outputs found

    Just a Second -- Scheduling Thousands of Time-Triggered Streams in Large-Scale Networks

    Full text link
    Deterministic real-time communication with bounded delay is an essential requirement for many safety-critical cyber-physical systems, and has received much attention from major standardization bodies such as IEEE and IETF. In particular, Ethernet technology has been extended by time-triggered scheduling mechanisms in standards like TTEthernet and Time-Sensitive Networking. Although the scheduling mechanisms have become part of standards, the traffic planning algorithms to create time-triggered schedules are still an open and challenging research question due to the problem's high complexity. In particular, so-called plug-and-produce scenarios require the ability to extend schedules on the fly within seconds. The need for scalable scheduling and routing algorithms is further supported by large-scale distributed real-time systems like smart energy grids with tight communication requirements. In this paper, we tackle this challenge by proposing two novel algorithms called Hierarchical Heuristic Scheduling (H2S) and Cost-Efficient Lazy Forwarding Scheduling (CELF) to calculate time-triggered schedules for TTEthernet. H2S and CELF are highly efficient and scalable, calculating schedules for more than 45,000 streams on random networks with 1,000 bridges as well as a realistic energy grid network within sub-seconds to seconds

    Design of Time-Sensitive Networks For Safety-Critical Cyber-Physical Systems

    Get PDF
    A new era of Cyber-Physical Systems (CPSs) is emerging due to the vast growth in computation and communication technologies. A fault-tolerant and timely communication is the backbone of any CPS to interconnect the distributed controllers to the physical processes. Such reliability and timing requirements become more stringent in safety-critical applications, such as avionics and automotive. Future networks have to meet increasing bandwidth and coverage demands without compromising their reliability and timing. Ethernet technology is efficient in providing a low-cost scalable networking solution. However, the non-deterministic queuing delay and the packet collisions deny low latency communication in Ethernet. In this context, IEEE 802.1 Time Sensitive Network (TSN) standard has been introduced as an extension of the Ethernet technology to realize switched network architecture with real-time capabilities. TSN offers Time-Triggered (TT) traffic deterministic communication. Bounded Worst-Case end-to-end Delay (WCD) delivery is yielded by Audio Video Bridging (AVB) traffic. In this thesis, we are interested in the TSN design and verification. TSN design and verification are challenging tasks, especially for realistic safety-critical applications. The increasing complexity of CPSs widens the gap between the underlying networks' scale and the design techniques' capabilities. The existing TSN's scheduling techniques, which are limited to small and medium networks, are good examples of such a gap. On the other hand, the TSN has to handle dynamic traffic in some applications, e.g., Fog computing applications. Other challenges are related to satisfying the fault-tolerance constraints of mixed-criticality traffic in resource-efficient manners. Furthermore, in space and avionics applications, the harsh radiation environment implies verifying the TSN's availability under Single Event Upset (SEU)-induced failures. In other words, TSN design has to manage a large variety of constraints regarding the cost, redundancy, and delivery latency where no single design approach fits all applications. Therefore, TSN's efficient employment demands a flexible design framework that offers several design approaches to meet the broad range of timing, reliability, and cost constraints. This thesis aims to develop a TSN design framework that enables TSN deployment in a broad spectrum of CPSs. The framework introduces a set of methods to address the reliability, timing, and scalability aspects. Topology synthesis, traffic planning, and early-stage modeling and analysis are considered in this framework. The proposed methods work together to meet a large variety of constraints in CPSs. This thesis proposes a scalable heuristic-based method for topology synthesis and ILP formulations for reliability-aware AVB traffic routing to address the fault-tolerance transmission. A novel method for scalable scheduling of TT traffic to attain real-time transmission. To optimize the TSN for dynamic traffic, we propose a new priority assignment technique based on reinforcement learning. Regarding the TSN verification in harsh radiation environments, we introduce formal models to investigate the impact of the SEU-induced switches failures on the TSN availability. The proposed analysis adopts the model checking and statistical model checking techniques to discover and characterize the vulnerable design candidates

    A Survey of Scheduling in Time-Sensitive Networking (TSN)

    Full text link
    TSN is an enhancement of Ethernet which provides various mechanisms for real-time communication. Time-triggered (TT) traffic represents periodic data streams with strict real-time requirements. Amongst others, TSN supports scheduled transmission of TT streams, i.e., the transmission of their packets by edge nodes is coordinated in such a way that none or very little queuing delay occurs in intermediate nodes. TSN supports multiple priority queues per egress port. The TAS uses so-called gates to explicitly allow and block these queues for transmission on a short periodic timescale. The TAS is utilized to protect scheduled traffic from other traffic to minimize its queuing delay. In this work, we consider scheduling in TSN which comprises the computation of periodic transmission instants at edge nodes and the periodic opening and closing of queue gates. In this paper, we first give a brief overview of TSN features and standards. We state the TSN scheduling problem and explain common extensions which also include optimization problems. We review scheduling and optimization methods that have been used in this context. Then, the contribution of currently available research work is surveyed. We extract and compile optimization objectives, solved problem instances, and evaluation results. Research domains are identified, and specific contributions are analyzed. Finally, we discuss potential research directions and open problems.Comment: 34 pages, 19 figures, 9 tables 110 reference

    Determinism Enhancement and Reliability Assessment in Safety Critical AFDX Networks

    Get PDF
    RÉSUMÉ AFDX est une technologie basée sur Ethernet, qui a été développée pour répondre aux défis qui découlent du nombre croissant d’applications qui transmettent des données de criticité variable dans les systèmes modernes d’avionique modulaire intégrée (Integrated Modular Avionics). Cette technologie de sécurité critique a été notamment normalisée dans la partie 7 de la norme ARINC 664, dont le but est de définir un réseau déterministe fournissant des garanties de performance prévisibles. En particulier, AFDX est composé de deux réseaux redondants, qui fournissent la haute fiabilité requise pour assurer son déterminisme. Le déterminisme de AFDX est principalement réalisé par le concept de liens virtuels (Virtual Links), qui définit une connexion unidirectionnelle logique entre les points terminaux (End Systems). Pour les liens virtuels, les limites supérieures des délais de bout en bout peuvent être obtenues en utilisant des approches comme calcul réseau, mieux connu sous l’appellation Network Calculus. Cependant, il a été prouvé que ces limites supérieures sont pessimistes dans de nombreux cas, ce qui peut conduire à une utilisation inefficace des ressources et augmenter la complexité de la conception du réseau. En outre, en raison de l’asynchronisme de leur fonctionnement, il existe plusieurs sources de non-déterminisme dans les réseaux AFDX. Ceci introduit un problème en lien avec la détection des défauts en temps réel. En outre, même si un mécanisme de gestion de la redondance est utilisé pour améliorer la fiabilité des réseaux AFDX, il y a un risque potentiel souligné dans la partie 7 de la norme ARINC 664. La situation citée peut causer une panne en dépit des transmissions redondantes dans certains cas particuliers. Par conséquent, l’objectif de cette thèse est d’améliorer la performance et la fiabilité des réseaux AFDX. Tout d’abord, un mécanisme fondé sur l’insertion de trames est proposé pour renforcer le déterminisme de l’arrivée des trames au sein des réseaux AFDX. Parce que la charge du réseau et la bande passante moyenne utilisée augmente due à l’insertion de trames, une stratégie d’agrégation des Sub-Virtual Links est introduite et formulée comme un problème d’optimisation multi-objectif. En outre, trois algorithmes ont été développés pour résoudre le problème d’optimisation multi-objectif correspondant. Ensuite, une approche est introduite pour incorporer l’analyse de la performance dans l’évaluation de la fiabilité en considérant les violations des délais comme des pannes.----------ABSTRACT AFDX is an Ethernet-based technology that has been developed to meet the challenges due to the growing number of data-intensive applications in modern Integrated Modular Avionics systems. This safety critical technology has been standardized in ARINC 664 Part 7, whose purpose is to define a deterministic network by providing predictable performance guarantees. In particular, AFDX is composed of two redundant networks, which provide the determinism required to obtain the desired high reliability. The determinism of AFDX is mainly achieved by the concept of Virtual Link, which defines a logical unidirectional connection from one source End System to one or more destination End Systems. For Virtual Links, the end-to-end delay upper bounds can be obtained by using the Network Calculus. However, it has been proved that such upper bounds are pessimistic in many cases, which may lead to an inefficient use of resources and aggravate network design complexity. Besides, due to asynchronism, there exists a source of non-determinism in AFDX networks, namely frame arrival uncertainty in a destination End System. This issue introduces a problem in terms of real-time fault detection. Furthermore, although a redundancy management mechanism is employed to enhance the reliability of AFDX networks, there still exist potential risks as pointed out in ARINC 664 Part 7, which may fail redundant transmissions in some special cases. Therefore, the purpose of this thesis is to improve the performance and the reliability of AFDX networks. First, a mechanism based on frame insertion is proposed to enhance the determinism of frame arrival within AFDX networks. As the network load and the average bandwidth used by a Virtual Link increase due to frame insertion, a Sub-Virtual Link aggregation strategy, formulated as a multi-objective optimization problem, is introduced. In addition, three algorithms have been developed to solve the corresponding multi-objective optimization problem. Next, an approach is introduced to incorporate performance analysis into reliability assessment by considering delay violations as failures. This allowed deriving tighter probabilistic upper bounds for Virtual Links that could be applied in AFDX network certification. In order to conduct the necessary reliability analysis, the well-known Fault-Tree Analysis technique is employed and Stochastic Network Calculus is applied to compute the upper bounds with various probability limits

    PACE: Simple Multi-hop Scheduling for Single-radio 802.11-based Stub Wireless Mesh Networks

    Get PDF
    IEEE 802.11-based Stub Wireless Mesh Networks (WMNs) are a cost-effective and flexible solution to extend wired network infrastructures. Yet, they suffer from two major problems: inefficiency and unfairness. A number of approaches have been proposed to tackle these problems, but they are too restrictive, highly complex, or require time synchronization and modifications to the IEEE 802.11 MAC. PACE is a simple multi-hop scheduling mechanism for Stub WMNs overlaid on the IEEE 802.11 MAC that jointly addresses the inefficiency and unfairness problems. It limits transmissions to a single mesh node at each time and ensures that each node has the opportunity to transmit a packet in each network-wide transmission round. Simulation results demonstrate that PACE can achieve optimal network capacity utilization and greatly outperforms state of the art CSMA/CA-based solutions as far as goodput, delay, and fairness are concerned
    • …
    corecore