3 research outputs found

    New Solutions Based On Wireless Networks For Dynamic Traffic Lights Management: A Comparison Between IEEE 802.15.4 And Bluetooth

    Get PDF
    Abstract The Wireless Sensor Networks are widely used to detect and exchange information and in recent years they have been increasingly involved in Intelligent Transportation System applications, especially in dynamic management of signalized intersections. In fact, the real-time knowledge of information concerning traffic light junctions represents a valid solution to congestion problems. In this paper, a wireless network architecture, based on IEEE 802.15.4 or Bluetooth, in order to monitor vehicular traffic flows near to traffic lights, is introduced. Moreover, an innovative algorithm is proposed in order to determine dynamically green times and phase sequence of traffic lights, based on measured values of traffic flows. Several simulations compare IEEE 802.15.4 and Bluetooth protocols in order to identify the more suitable communication protocol for ITS applications. Furthermore, in order to confirm the validity of the proposed algorithm for the dynamic management of traffic lights, some case studies have been considered and several simulations have been performed

    Analyzing Measures for the Construct “Energy-Conscious Driving”: A Synthesized Measurement Model to Operationalize Eco-Feedback

    Get PDF
    During the last several years, a large number of studies have dealt with eco-driving and have defined rules for driving vehicles more ecologically, eco-friendly, and energy efficiently. These rules are vague or insufficient for achieving their purpose, and the construct “energy- conscious driving” is unsatisfactorily defined. To structure available research and develop a more extensive concept of energy-conscious driving, a measurement model for energy- conscious driving is introduced. The model stems from a literature review conducted to identify six groups of measures for energy-conscious driving, and a synthesis of these groups to identify dependencies between them. This paper contributes to theory by building on existing knowledge on eco-driving through an analysis of available literature and describing dependencies between our six measures of energy-conscious driving. Based on our model, researchers can evaluate different eco-feedback designs and practitioners can implement more specific eco-feedback systems for improved user performance

    Foundations and applications of human-machine-interaction

    Get PDF
    Der vorliegende Tagungsband zur 10. Berliner Werkstatt Mensch-Maschine-Systeme gibt einen Einblick in die aktuelle Forschung im Bereich der Mensch-Maschine- Interaktion. Einen besonderen Fokus stellt das Wechselspiel von Grundlagenforschung und anwendungsbezogener Forschung dar, was sich im breiten Themenspektrum widerspiegelt, welches von theoretischen und methodischen Betrachtungen bis hin zu anwendungsnahen Fragestellungen reicht. Dabei finden Inhalte aus allen Phasen des Forschungsprozesses Beachtung, sodass auch im Rahmen der 10. Berliner Werkstatt MMS wieder sowohl neue Untersuchungskonzepte als auch abschließende Befunde diskutiert werden. Zentrale Themengebiete sind u. a. Fahrer-Fahrzeug-Interaktion, Assistenzsysteme, User Experience, Usability, Ubiquitous Computing, Mixed & Virtual Reality, Robotics & Automation, Wahrnehmungsspezifika sowie Psychophysiologie und Beanspruchung in der Mensch-Maschine-Interaktion.The proceedings of the 10th Berlin Workshop Human-Machine-Systems provide an insight into the current research in the field of human-machine-interaction. The main focus lies on the interplay between basic and applied research, which is reflected in the wide range of subjects: from theoretical and methodological issues to application oriented considerations. Again all stages of the research process are represented in the contributions of the 10th Berlin Workshop HMS. This means new research concepts as well as final results are subject of this volume. Central topics include driver-vehicleinteraction, assistance systems, user experience, usability, ubiquitous computing, mixed and virtual reality, robotics & automation, perception specifics, as well as psychophysiology and workload in human-machine-interaction
    corecore