3 research outputs found

    Multimodal manifold-regularized transfer learning for MCI conversion prediction

    Get PDF
    As the early stage of Alzheimer's disease (AD), mild cognitive impairment (MCI) has high chance to convert to AD. Effective prediction of such conversion from MCI to AD is of great importance for early diagnosis of AD and also for evaluating AD risk pre-symptomatically. Unlike most previous methods that used only the samples from a target domain to train a classifier, in this paper, we propose a novel multimodal manifold-regularized transfer learning (M2TL) method that jointly utilizes samples from another domain (e.g., AD vs. normal controls (NC)) as well as unlabeled samples to boost the performance of the MCI conversion prediction. Specifically, the proposed M2TL method includes two key components. The first one is a kernel-based maximum mean discrepancy criterion, which helps eliminate the potential negative effect induced by the distributional difference between the auxiliary domain (i.e., AD and NC) and the target domain (i.e., MCI converters (MCI-C) and MCI non-converters (MCI-NC)). The second one is a semi-supervised multimodal manifold-regularized least squares classification method, where the target-domain samples, the auxiliary-domain samples, and the unlabeled samples can be jointly used for training our classifier. Furthermore, with the integration of a group sparsity constraint into our objective function, the proposed M2TL has a capability of selecting the informative samples to build a robust classifier. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database validate the effectiveness of the proposed method by significantly improving the classification accuracy of 80.1 % for MCI conversion prediction, and also outperforming the state-of-the-art methods

    Domain Transfer Learning for MCI Conversion Prediction

    Get PDF
    Machine learning methods have been increasingly used to predict the conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD), by classifying MCI converters (MCI-C) from MCI non-converters (MCI-NC). However, most of existing methods construct classifiers using only data from one particular target domain (e.g., MCI), and ignore data in the other related domains (e.g., AD and normal control (NC)) that could provide valuable information to promote the performance of MCI conversion prediction. To this end, we develop a novel domain transfer learning method for MCI conversion prediction, which can use data from both the target domain (i.e., MCI) and the auxiliary domains (i.e., AD and NC). Specifically, the proposed method consists of three key components: 1) a domain transfer feature selection (DTFS) component that selects the most informative feature-subset from both target domain and auxiliary domains with different imaging modalities, 2) a domain transfer sample selection (DTSS) component that selects the most informative sample-subset from the same target and auxiliary domains with different data modalities, and 3) a domain transfer support vector machine (DTSVM) classification component that fuses the selected features and samples to separate MCI-C and MCI-NC patients. We evaluate our method on 202 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with MRI, FDG-PET and CSF data. The experimental results show that the proposed method can classify MCI-C patients from MCI-NC patients with an accuracy of 79.4%, with the aid of additional domain knowledge learned from AD and NC

    Increasing power to predict mild cognitive impairment conversion to Alzheimer's disease using hippocampal atrophy rate and statistical shape models

    No full text
    Identifying mild cognitive impairment (MCI) subjects who will convert to clinical Alzheimer’s disease (AD) is important for therapeutic decisions, patient counselling and clinical trials. Hippocampal volume and rate of atrophy predict clinical decline at the MCI stage and progression to AD. In this paper, we create p-maps from the differences in the shape of the hippocampus between 60 normal controls and 60 AD subjects using statistical shape models, and generate different regions of interest (ROI) by thresholding the p-maps at different significance levels. We demonstrate increased statistical power to classify 86 MCI converters and 128 MCI stable subjects using the hippocampal atrophy rates calculated by the boundary shift integral within these ROIs
    corecore