5 research outputs found

    Accurate Interactive Specular Reflections on Curved Objects

    Get PDF
    International audienceWe present a new method to compute interactive reflections on curved objects. The approach creates virtual reflected objects which are blended into the scene. We use a property of the reflection geometry which allows us to efficiently and accurately find the point of reflection for every reflected vertex, using only reflector geometry and normal information. This reflector information is stored in a pair of appropriate cubemaps, thus making it available during rendering. The implementation presented achieves interactive rates on reasonablysized scenes. In addition,we introduce an interpolation method to control the accuracy of our solution depending on the required frame rate

    Perceptually-Driven Decision Theory for Interactive Realistic Rendering

    Get PDF
    this paper we introduce a new approach to realistic rendering at interactive rates on commodity graphics hardware. The approach uses efficient perceptual metrics within a decision theoretic framework to optimally order rendering operations, producing images of the highest visual quality within system constraints. We demonstrate the usefulness of this approach for various applications such as diffuse texture caching, environment map prioritization and radiosity mesh simplification. Although here we address the problem of realistic rendering at interactive rates, the perceptually-based decision theoretic methodology we introduce can be usefully applied in many areas of computer graphic

    An efficient approach to layered-depth image based rendering

    Get PDF
    Master'sMASTER OF SCIENC

    Increased Photorealism for Interactive Architectural Walkthroughs

    No full text
    This paper presents a new method for interactive rendering of globally illuminated static scenes. Global illumination is decomposed into view-independent (diffuse) and view-dependent (non-diffuse) components. The two are recombined during rendering using a hybrid geometry- and image-based approach along with multi-pass blending techniques. This approach allows the preprocessing of both components and the fast rendering of globally illuminated scenes. The view-independent component uses a traditional precomputed geometry-based radiosity solution that is rendered using standard graphics hardware. The view-dependent component is decomposed into “what is reflected ” (radiance with depth) and “how it is reflected ” (BRDF), and precomputed and rendered using image-based approaches. Radiance is stored as images with depth, and rendered using perspective reprojection; the BRDF is decomposed into an integration of incoming radiance and a directional modulation. The radiance integration term is approximated by convolving the reflected image with precomputed kernel textures based on material properties. The directional modulation is stored as a reflectance modulation texture based on material properties and is rendered using spheremapping during a blending pass

    High-fidelity rendering on shared computational resources

    Get PDF
    The generation of high-fidelity imagery is a computationally expensive process and parallel computing has been traditionally employed to alleviate this cost. However, traditional parallel rendering has been restricted to expensive shared memory or dedicated distributed processors. In contrast, parallel computing on shared resources such as a computational or a desktop grid, offers a low cost alternative. But, the prevalent rendering systems are currently incapable of seamlessly handling such shared resources as they suffer from high latencies, restricted bandwidth and volatility. A conventional approach of rescheduling failed jobs in a volatile environment inhibits performance by using redundant computations. Instead, clever task subdivision along with image reconstruction techniques provides an unrestrictive fault-tolerance mechanism, which is highly suitable for high-fidelity rendering. This thesis presents novel fault-tolerant parallel rendering algorithms for effectively tapping the enormous inexpensive computational power provided by shared resources. A first of its kind system for fully dynamic high-fidelity interactive rendering on idle resources is presented which is key for providing an immediate feedback to the changes made by a user. The system achieves interactivity by monitoring and adapting computations according to run-time variations in the computational power and employs a spatio-temporal image reconstruction technique for enhancing the visual fidelity. Furthermore, algorithms described for time-constrained offline rendering of still images and animation sequences, make it possible to deliver the results in a user-defined limit. These novel methods enable the employment of variable resources in deadline-driven environments
    corecore