

AN EFFICIENT APPROACH

TO

LAYERED-DEPTH IMAGE BASED RENDERING

RAVINDER NAMBOORI

NATIONAL UNIVERSITY OF SINGAPORE

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48627253?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AN EFFICIENT APPROACH

TO

LAYERED-DEPTH IMAGE BASED RENDERING

RAVINDER NAMBOORI

(B.Comp (Hons.), NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2003

��������	
������

 i

ACKNOWLEDGEMENTS

I would like to sincerely thank A/P Teh Hung Chuan and Dr. Huang Zhiyong, my project

advisors, for their continual support and guidance throughout my research. Their

assistance, patience, warmth and constant encouragement have been invaluable to this

research. My thanks to Dr. Chang Ee Chien and Mr. Low Kok Lim for their helpful

suggestions.

I am extremely grateful to Mr. Chong Peng Kong for his time and help with the lab

apparatus. This project wouldn’t have been possible without his willingness to help at any

moment and his readiness to ensure that all is well with my work.

My special thanks to Mr. Sushil Chauhan, for his help in better formulating the sampling

arc functions.

Ravinder Namboori

Oct 2003

���������	�
��
���

 ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

SUMMARY iv

LIST OF FIGURES v

CHAPTER 1 INTRODUCTION 1

1.1 Documentation Layout 1

1.2 Image Based Rendering and the Sampling Problem 2

1.3 Problem Statement and Research Scope 5

1.4 The System Framework 6

CHAPTER 2 OVERVIEW OF RELATED WORK 11

2.1 Splatting 12

2.2 Multi-Resolution Sampling 12

2.3 Sampling all Visible Surfaces 13

2.4 Best Next View Sampling 14

2.5 Sampling issue for other Rendering Techniques 15

CHAPTER 3 THE PROPOSED IMRPOVEMENT TO THE LDI SYSTEM 17

3.1 Brief Overview 18

3.2 Patch Categorization 21

3.3 Contour Formation, Visibility and Sampling Graphs 26

3.4 Rendering Engine 39

3.5 Comparison 47

CHAPTER 4 DESCRIPTION OF SYSTEM IMPLEMENTATION 51

4.1 Hardware Components 51

4.2 Software Components 52

���������	�
��
���

 iii

4.3 Other Issues 54

CHAPTER 5 EXPERIMENTAL RESULTS AND DISCUSSIONS 59

5.1 Results 59

5.2 Comparison 63

CHAPTER 6 CONCLUSION 75

CHAPTER 7 FUTURE WORK 77

7.1 Reflectance Properties 77

7.2 Lighting Effects 77

7.3 Three-Dimensional Adaptive Sampling 78

7.4 Experiments on more complex scenes 79

REFERENCES 81

APPENDIX A SAMPLING ARC DERIVATION A1

APPENDIX B PUBLISHED WORK B1

��������

 iv

SUMMARY

There exist a lot of computer graphics techniques to synthesize 3-D environments, of

which, Image Based Rendering (IBR) techniques are becoming increasingly popular. In

this thesis we concentrate on improving one such IBR technique, viz. Layered Depth

Images (LDI). This technique, like many other IBR techniques, works on a set of pre-

acquired imagery to model the world, and often, problems have been encountered in

determining how exactly to decide on this pre-acquired set of sample images. As the

quality of the synthetic view is governed by the initial stages of sampling, addressing this

problem can enhance the result achieved by the eventual rendering engine.

This research presents a new approach to rendering an LDI, by adaptively sampling the

raw data based on the determined set of sample parameters. This approach eliminates the

redundancy caused by over-sampling, and removes the hole artefact caused by under-

sampling. In addition, the rendering speed of the LDI is improved by the pre-computed

visibility graph and patch lookup table.

Subject Descriptors:

 G.1.2 Approximation of surfaces and contours

I.3.3 Picture/Image Generation

I.4.1 Digitization and Image Capture

I.4.8 Scene Analysis

����������	
���

 v

LIST OF FIGURES

Figure 1.1 Model of Image Based Rendering 4

Figure 1.2 Framework of the Layered Depth Image based rendering System 7

Figure 1.3 Our System Framework 8

Figure 3.1 Adaptive Sampling Pipeline 18

Figure 3.2 Patch Categorization 19

Figure 3.3 Contour Formation, Sampling and Visibility Graphs 20

Figure 3.4 Re-rendering Engine 20

Figure 3.5 Patch Size Constraint (top view) 23

Figure 3.6 From a group of Rectangle Patches to a 2-D contour 26

Figure 3.7 Sampling Arc 29

Figure 3.8 Sampling Arc derivation 32

Figure 3.9 Sampling Graph 33

Figure 3.10 Directed Graph of arc segments 34

Figure 3.11 Visibility Graph 37

Figure 3.12 LDI re-projection and interpolation 41

Figure 3.13 McMillan’s ordering 45

Figure 4.1 Set-up for sampling 52

Figure 4.2 The sampled objects 53

Figure 4.3 Surface Normal Approximation 56

Figure 5.1 (a) Synthetic Views generated by the improved system –

 Mannequin

60

Figure 5.1 (b) Synthetic Views generated by the improved system – Pooh Bear 61

Figure 5.2 Statistical information for the improved system 62

Figure 5.3 (a) Synthetic Views generated by the sparsely sampled LDI system

 (without splatting) – Mannequin

64

����������	
���

 vi

Figure 5.3 (a) Synthetic Views generated by the sparsely sampled LDI system

 (without splatting) – Pooh Bear

65

Figure 5.3 (b) Synthetic Views generated by the sparsely sampled LDI system

 (with splatting) – Mannequin

66

Figure 5.3 (b) Synthetic Views generated by the sparsely sampled LDI system

 (with splatting) – Pooh Bear

67

Figure 5.4 (a) Statistical information for the sparsely sampled LDI system

 (without splatting)

68

Figure 5.4 (b) Statistical information for the sparsely sampled LDI system

 (with splatting)

69

Figure 5.5 (a) Synthetic Views generated by the densely sampled LDI system

 – Mannequin

70

Figure 5.5 (b) Synthetic Views generated by the densely sampled LDI system

 – Pooh Bear

71

Figure 5.6 Statistical information for the densely sampled LDI system 72

��������	
��� �� � � � �� �

 1

INTRODUCTION

1.1 Documentation Layout

For the purpose of easy readability, the content has been divided into seven chapters. This

chapter, Chapter 1, is an introduction to the research as a whole, an introduction to the

various phases of the research, as well as the nature of this project. We shall highlight the

problem statement and the overall system framework in this chapter.

Chapter 2 covers an overview of the related work in the area to date. Included in this

chapter, is a brief description of the various researches and techniques in the area of Image

Based Rendering and Layered Depth Images in particular, sampling methods and

automatic camera placement techniques.

Chapter 3 highlights the proposed improvement to the Layered Depth Image system by

adaptively sampling the reference images and pre-computing the patch lookup table. Also

discussed in this chapter are the derivations and assumptions leading to the essential steps

involved in the system framework.

Chapter 4 is an elaboration of the implementation of the system and the sampling issues

involved in the research. This section takes a methodological approach to exemplify the

steps involved in demonstrating the proposed method of improving the Layered Depth

Image system.

��������	
��� �� � � � �� �

 2

Chapter 5 discusses the results achieved by the implementation of the proposed method. In

this chapter, we go through the various examples used and the outputs we got using our

system, and contrast the result with those achieved by an earlier framework, which does

not include the proposed improvements.

Chapter 6 concludes this thesis discussing the lessons learnt from this research and

reinstating the goals achieved and the solution proposed and implemented.

Chapter 7 addresses the future prospects of research in this area, and wraps up the report

with a final word.

1.2 Image Based Rendering and the Sampling Problem

The traditional approach to synthesize realistic images of virtual environments involve

modeling the environments using a collection of 3-D geometrical entities with their

associated material properties, and a set of light sources. Then, rendering techniques such

as radiosity and ray tracing are used to generate the images at given viewpoints. The

realism of such rendered images is limited by the accuracy in the description of the

primitive material and illumination properties and hand coded or mathematically derived

graphical models. Also, real-time rendering using this technique relies heavily on the

complexity of the scene geometry and the hardware configuration.

Computer Vision, on the other hand can be considered as an inverse process of computer

graphics, which recovers 3-D scene geometry from 2-D images. Extracting 3-D geometry

of a scene usually requires solving difficult problems such as stereovision, depth from

��������	
��� �� � � � �� �

 3

shading, or using expensive rangefinders. From the 3-D geometry recovered,

approximated 3-D models are constructed, from which new images can be synthesized.

However, these reconstruction techniques are usually computationally expensive and the

reconstructed models suffer from the lack of accuracy.

Image Based Rendering is an emerging new field, which counters these limitations. In this

technique, new images and 3-D worlds can be modeled without the knowledge of the

geometry of the scene involved. Realism is achieved by the fact that the basic entities of

the 3-D environment are no longer polygons or geometries, but are pre-acquired images.

Fig 1.1 depicts the process of Image Based Rendering. As can be seen, it has emerged

from both the fields of Computer Graphics and Computer Vision and yet bypasses the

complicated and limiting stage of defining the scene’s geometry. It also shows that the

tedious 3D shape modeling can be avoided and little or no knowledge of 3D

shape of the scene is required.

In addition, what is highlighted in Fig 1.1 is the new step of sampling, which dictates how

different the Modeled Synthetic World is going to be, in comparison to the Real world. As

the quality of the synthetic view is now governed by the reference images at our disposal

and not any 3D geometry, the initial stages of sampling becomes of paramount

importance. The sampling problem is to determine where the scene needs to be sampled

from and how many such samples are required to adequately sample the scene. It is

important that a robust solution be formulated for the problem of sampling and

determining the exact set of reference imagery required in rendering the 3D world.

��������	
��� �� � � � �� �

 4

Figure 1.1: Model of Image Based Rendering

Tackling the sampling problem isn’t as straightforward as over-sampling, as that would

result not only in redundancy of sampled data, but also an increased amount of time to re-

render the synthetic view. On the contrary an attempt to under-sample even if followed by

stages of splatting, compromises on the realism of the modeled world, often leaving holes

and visual artifacts, or portions of synthetically splatted patches.

A lot has been researched in the field of Image Based Rendering since its emergence a few

years back. Essentially Image Based Rendering is about creating new photo-realistic

images of complex scenes through interpolation techniques or other computations based

on input data from photographs, drawings and rendered virtual scenes. There are various

techniques to model a 3-D World using pre-acquired imagery, viz. Layered Depth Images,

LumiGraph/Light Field, Panorama, View Morphing etc. All these techniques differ

slightly in striking a balance between the computation involved in generating new views

and the size of the sampled database. Irrespective of the approach, the stage of sampling is

indispensable to its framework. The availability of geometry as in the case of methods like

Sampling

Extract 3-D Geometry
(Computer Vision)

Real World

Scene Geometry

Conventional
Rendering
(Computer Graphics)

Modeled
Synthetic World

Image Based
Rendering Reference

Imagery

��������	
��� �� � � � �� �

 5

Layered Depth Images provides ample opportunity to precisely select and limit the

reference Imagery. As for the other approaches, splatting and other techniques to

compensate for under sampling have been seen as a possible alternative. We shall

overview these techniques in Chapter 2, under Overview of Related Work.

1.3 Problem Statement and Research Scope

This Research is focused on one of the areas of the huge field of Image Based Rendering,

viz. Layered Depth Images. The aim of this research work is to enhance the realism and

hasten the generation of the views achieved by the standard way of Layered Depth Image

based Rendering by adaptively sampling the reference images and pre-computing a patch

lookup table. The idea is to introduce a filtering stage after densely over-sampling the real

world. The filtering stage, like the sampling stage, being a part of the pre-rendering phase,

helps out the rendering engine by pulling out additional computations, and saving up

precious time while rendering. This method would not only improve the quality of the

synthetic images generated, in terms of getting rid of holes and occlusion artefacts, but

will also enable quick generation of images, owing to the tabulation of the required

sampled imagery that is acquired.

The major challenge is to effectively compute the required reference viewpoints from the

dense sample to eliminate possible loss or redundancy of data. To create a compelling

sense of virtual presence, the following goals must be achieved:

• Users can interactively navigate through the 3-D environment, without

hardware acceleration.

��������	
��� �� � � � �� �

 6

• The photo-realism of the environment ought not to be compromised in terms of

holes or other synthetic occlusions.

• The speed of the rendering pipeline should be unaffected by the fact that the

sampled imagery is bigger than a sparsely sampled image set.

The sampled images are assumed to be taken under white light and with an ideal pinhole

camera (no lens distortion).

The contributions of this research include:

• Implementation of a Layered Depth Image framework that enables rendering

of complex 3-D environments, catering for absence of holes or visual artefacts

in the modeled world.

• An efficient approach to tabulate the pre-acquired set of imagery, to ensure fast

reference view selection and rendering of the synthetic views.

• A method which retains the realism of the 3-D environment, through dense

samples of the real world, and yet achieves a rendering engine which is as fast

as a sparse sampled LDI system.

1.4 The System Framework

The original Layered Depth Image system is essentially classified into 3 main phases.

Scene Sampling, Scene Geometry and Photometry Extraction and Scene Resampling.

The System framework of this Layered Depth Image based rendering approach is depicted

��������	
��� �� � � � �� �

 7

Figure 1.2: Framework of the Layered Depth Image based rendering System

in Fig 1.2.

We work on the first 3 stages of this framework, the so-called pre-computation phase, and

Reference Views
Selection

Normals from depths

Image Samples
(with Surface Normals)

Image Samples
(Color, range maps)

Layered Depth Image
Generation

Render Synthetic
Views/Environment

Incremental Warping
Process

Scene
Sampling

Scene
Resampling

Scene Geometry
and Photometry

Extraction

��������	
��� �� � � � �� �

 8

Figure 1.3: Our System Framework

modify the framework as depicted in Fig 1.3. We briefly go over these new stages of the

framework in the sections to come.

Hash Table
for

Reference Views
Selection

Patch Identification
and Rectangularisation

Contour Formation

Identifying Visibility
and Sampling regions

Filtered Image
Patch Samples

Reference Views
Selection

Image Samples
(Color, range maps)

Layered Depth Image
Generation

Render Synthetic
Views/Environment

Incremental Warping
Process

Scene
Sampling

Scene
Resampling

Scene Geometry
and Photometry

Extraction

Image Samples
(with Surface Normals)

��������	
��� �� � � � �� �

 9

1.4.1 Patch Identification and Rectangularisation

The surface normals at every point are calculated based on the range information. (for

more information on the calculation of surface normals, please refer to chapter 4, section

4.3.2). The color & range maps, along with the normals constitute our sampled point

cloud. From this point cloud, this step attempts to identify the uniform patches, surfaces

that are not uneven and that fit in the camera’s field of view, sets of points defined by

certain patch constraints. Based on these constraints, the whole point cloud is divided into

smaller uniform regions called patches. These patches, owing to the constraints thus

applied, have a close to constant third dimension. The patches are then rectangularised, a

recursive process which applies a greedy algorithm to extract the largest rectangle in the

patch. At the end of this stage, we have categorized the point cloud into rectangular

patches, ones that can be summarized as a line in two dimensions, when viewed from the

top. This process is explained and discussed in detail in chapter 3.

1.4.2 Contour Formation

The output of the previous stage, viz. the rectangle patches, is fed into this part of the

pipeline, in an attempt to identify unique 2D-contours along the vertical axis. The aim of

this stage is to identify those parts in the vertical space, which when viewed from the top,

look as if it were in a single plane. This stage subsequently summarizes these parts of the

object as a 2D-contour associated to a particular vertical range.

1.4.3 Identifying Visibility and Sampling Regions

In this step, we find the visibility and sampling regions for each of the contours thus

found. Visibility region for a particular edge in a 2D-contour is defined as that region from

��������	
��� �� � � � �� �

 10

which the whole edge is visible, if there is no occlusion. A sampling region for a

particular edge is defined as the region where it’s appropriate to sample that particular

edge, ensuring that all of the data visible on the edge is captured. A sampling region is

determined by formulae dependent on the size of the edge, the camera calibrations and the

sampling camera trajectory.

1.4.4 Patch lookup table for Reference view selection

This last step, despite being out of the scene-sampling phase, and being a part of re-

rendering, is worthwhile mentioning at this point, because of the organization of the data

in the prior phases. Given the structured organization of the sampled points of the original

data, the selection of reference views to render while generating a new synthetic view

becomes straightforward.

During rendering, the necessity to look for the closest reference viewpoints or the

reference views which cover such and such occluded region is overcome by the fact that

these considerations have been addressed during the pre-computation phase of

determining the required set of sampled imagery. Hence, the reference view selection

becomes a fast and straightforward procedure of looking up the hash table of patches thus

created, for relevant reference data, as the viewer moves around the 3D space.

��������	
�� � ��� �� �� ��� ������ �� � ��

 11

OVERVIEW OF RELATED WORK

Image based rendering techniques have been classified into four distinct categories: pixel

based, block based, reconstruction based and mosaicing [Kang, 1997]. These categories

are not necessarily mutually exclusive. Also, there exists a different categorization, i.e.

Rendering from Interpolation of Dense Samples, Panorama based Rendering, Morphing

and Depth based Rendering. These techniques vary largely in the knowledge of the

geometry of the scene and the number of samples of the scene. We shall restrict our

domain to the Depth based Rendering model, to be more specific, Layered Depth Image

Based Rendering.

The depth based rendering model exploits the additional data available in terms of the 2D

image samples being images with depths. These so called depth images, in addition to

having the color values at a particular pixel, also contain the depth information at that

location. Synthetic images for new viewpoints are created by a re-projection of the depth

pixels in the reference depth images [Lee, 1998]. Layered Depth Image Based Rendering

is an extension to the depth based rendering model, which performs warping from an

intermediate representation called a Layered Depth Image (LDI) [Shade et al., 1998]. An

LDI is a view of the scene from a single input camera view, but with multiple pixels along

each line of sight. An LDI is constructed by warping n depth images into a common

camera view.

This chapter surveys the various techniques employed to get around the sampling problem

��������	
�� � ��� �� �� ��� ������ �� � ��

 12

for the LDI based rendering method, discussed in the previous chapter. While some of

these techniques look at remedying the damage caused by the problem like splatting the

holes during rendering, some others attempt to find the best next view to sample,

assuming the first sample was ideal. All these techniques aim to exploit the geometrical

knowledge to improve the photo-realism of the synthetically generated scene.

2.1 Splatting

Splatting is a technique, which aims to remedy the effects of the sampling problem. The

Layered Depth Image, which is created from uniformly sampled images, is splat into the

output image by estimating the projected area of the warped pixels [Shade et al., 1998].

This estimation is computed differentially based on the distance between the sampled

surface point and the LDI camera, the field of view of the camera, the dimensions of the

LDI and the angle between the surface normal at the sampled surface point and the line of

sight to the LDI camera.

As splatting is a post-sampling step, care has to be taken that it doesn’t slow down the

rendering engine. In this view, a lookup table is generated. Before rendering each new

image, the new output camera information is used to pre-compute the lookup table.

2.2 Multi-Resolution Sampling

Multi-Resolution sampling attempts to get around the problem of over-sampling or under-

sampling for various camera distances, by sampling sets of images for different

resolutions. While splatting and meshing are proposed to deal with the disocclusion

artifacts, they are seemingly adequate only for post-rendering warping in which the

��������	
�� � ��� �� �� ��� ������ �� � ��

 13

resolution of the current view does not deviate much from the resolution of the reference

image.

In cases where an LDI is created from reference images not at similar distances from the

object under consideration, insufficient sampling rate of the LDI might cause the synthetic

view to look blurrier than it looks in the reference image closer to the object. On the

contrary excessive sampling rate of the LDI might slow down the rendering pipeline.

The LDI Tree method [Chang et al., 1999], employed a hierarchical partition scheme with

the concept of LDI, which preserves the sampling rate of the reference images by

adaptively selecting an LDI from the LDI cluster for each pixel. In another approach, an

L-System was implemented, which could store images of varying resolutions at different

nodes of the L-System for effective tree modeling. [Lluch et al., 2004].

2.3 Sampling all Visible Surfaces

As the name suggests, in this technique of sampling all visible surfaces, an attempt is

made to record a series of images that, collectively, capture all visible surfaces of the

object. This technique revolves around the selection of a good heuristic method to find a

good set of viewpoints for a given geometric model. The goal is to have sampled images

from the computed viewpoints such that every visible surface is shown at least once. One

such heuristic is to segment the object to exemplify hierarchical visibility [Stuerzlinger,

1998]. The scene is assumed to be a set of surface polygons organized in a hierarchy. The

��������	
�� � ��� �� �� ��� ������ �� � ��

 14

hierarchical visibility method subdivides the scene hierarchy depending on the relative

visibility of objects.

Yet another heuristic is to cover all possible surfaces, masking reference images as each

surface is considered [Fleshman et al., 1999]. In this approach, the set of scene polygons

visible from a viewing zone is approximated and then a greedy algorithm is employed to

select a small number of camera positions that together cover every polygon in the

geometric model. Towards this goal, the boundary of the walking zone is first tessellated.

Scene polygons are subsequently subdivided to reduce the likelihood of the visibility

problems. Visibility and quality of the subdivided sections of the polygons determine the

worth of any reference image.

2.4 Best Next View Sampling

The best next view problem is that of selecting the next view for the sampling system to

take, given some already acquired views of the object. Two criterions are often

considered in solving this problem. The visibility criterion attempts to maximize the

number of surfaces not seen thus far, by adding the next image to the sampled set, while

the quality criterion aims to improve the quality of the surfaces sampled. The quality

criterion prioritizes an image, which samples a decent number of surfaces, covering most

areas of these surfaces, over an image, which samples a lot of surfaces but obliquely.

Several methods are available in this form of sampling, most of them differing in the way

they establish the two criterion mentioned. In one particular approach, a volumetric

representation, termed the voxelmap, is generated at each cycle of best next view

��������	
�� � ��� �� �� ��� ������ �� � ��

 15

computation [Massios, Fisher, 1998]. The voxels thus scanned are marked empty, seen,

unseen or as an occlusion plane depending on the visibility from the new view. The seen

voxels carry a quality property, which is estimated by the aggregate normals of all the

points sampled in a particular voxel.

In yet another approach, each range image sampled thus far is approximated by a

triangular mesh [Garcia, 1998]. The resolution of the triangular mesh determines the

minimum distance of that can be distinguished during the exploration process. The edges

in these triangular meshes are marked as exterior, occlusion or interior depending on

whether they bound a region or whether they are susceptible to occlude surfaces of the

scene or whether they are formed by an overlap of two exterior edges. The quality

criterion is satisfied by a voting mechanism. Each occlusion edge has an associated

normal histogram and a tangent histogram. Every cell of the histogram keeps the sum of

all the associated normals. That cell is looked up for which has received the maximum

number of votes in either histogram.

2.5 Sampling Issue for other Rendering Techniques

Though drifting slightly from the area of concentration, interesting techniques have been

researched in two other forms of Image based rendering.

In Point based rendering [Grossman, Dally, 1998], an attempt is made to ignore the issue

of adequate sampling during rendering. The problem is dealt with, during the phase of

sampling, by suggesting that to minimize the number of samples that adequately sample

an object, the distance between the adjacent samples on the surface of the object should be

��������	
�� � ��� �� �� ��� ������ �� � ��

 16

as large as possible but less than the pixel side length at the target resolution assuming unit

magnification. An equilateral triangle mesh is used for the purpose.

For Lumigraph/Light Field Image based rendering techniques [Gortler et al., 1996], a

spectral analysis of light field signals combined with the sampling theorem is used to

derive the analytical functions that determine the minimum sampling rate [Chai et al.,

2000]. The minimum sampling rate is obtained by compacting the replicas of the spectral

support of the sampled light field within the smallest interval. As it is known that the

spectral support of a light field signal is bounded by the minimum and maximum depths

only, no matter how complicated the spectral support might be because of the depth

variations in the scene, a reconstruction filter with an optimal constant depth can be

designed to achieve anti aliased rendering.

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 17

THE PROPOSED IMPROVEMENT TO THE LDI SYSTEM

It is established that a Layered Depth Image is a view of the scene from a single input

camera view, but with multiple pixels along each line of sight. It is a comprehensive

image data structure, built to take into account various artifacts like occlusions and holes,

by storing not just the first layer of pixels but also a few layers along each line of sight.

Unfortunately, this comprehensive LDI framework’s ability to render photo realistic

views, devoid of holes and other visual artefacts, is highly dependent on the nature of the

reference images sampled, to be precise, the number of reference images sampled and the

position from which they are sampled.

The sampling problem is to determine where the scene needs to be sampled from and how

many such samples are required to adequately sample the scene. It is worthwhile to note

that under-sampling results in visual artefacts. On the contrary, over-sampling helps get

around the problem of visual artefacts, but at the cost of the rendering speed. There is no

one fixed scheme to adequately sample the LDI, as the occlusion artefacts and holes are

largely dependent on the scene’s geometry. Hence we adopt the approach to adaptively

sample the scene based on the scene’s available geometrical data.

In this chapter we shall discuss a method to adaptively sample a layered depth image,

based on the geometrical information at our disposal. We shall elaborate how the LDI

system is improved by this change in the sampling phase and the patch lookup table

generated during the pre-rendering phase. In the chapters to follow, we shall go over a

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 18

Figure 3.1: Adaptive Sampling Pipeline

sample implementation and the results observed using this model.

3.1 Brief Overview

Uniform sampling is the simplest alternative preferred by most LDI engines to-date, and

the inadequacy of the sampling problem is solved by methods like splatting discussed in

the previous chapter. The density of uniform sampling affects the quality of the output.

Sparse uniform sampling results in visual artefacts while dense uniform sampling ends up

with a slow re-rendering pipeline.

We approach the adaptive sampling method by starting with a highly dense uniform

sample set and adaptively filtering redundant data, retaining only the adequate

information. Figure 3.1 depicts the adaptive sampling pipeline.

Real Scene

Unique
Rectangularised

Patches

Required Sample
Patches

Patch categorization

Contour formation and
Sampling graphs

Uniform dense sampling Sample Reference
Images

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 19

Figure 3.2: Patch Categorization

The step of patch categorization first categorizes the uniformly sampled images into

uniquely defined patches. These patches help in guiding the sampling. The next step forms

contours with these patches, and identifies the sampling regions required. Eventually, the

exact reference points to sample from are deciphered, and the unnecessary data is

Real Scene

Uniformly
Sampled Images

Patches

Merged Patches

Overlapping
Patches?

Yes

Rectangularised
Patches

Any more
Patches?

No

Unique
Rectangularised

Patches

Highly dense uniform
sampling

Patch identification

Patch rectangularisation

Iterate through Patches

Merge Patches

Yes

No

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 20

Figure 3.3: Contour Formation, Sampling and Visibility Graphs

Figure 3.4: Re-rendering Engine

2D Contours

Reference views
required

Hash Table for
Reference View

Selection

Required Sample
Patches

Unique
Rectangularised

Patches

Scan line traversal and
contour identification

Identifying Sampling
regions

Identifying Visibility
regions

Assimilate required data

Patch Lookup
Table for

Reference View
Selection

Required Sample

Patches

LDI Walkthrough
Engine

Synthetic View

Walkthrough

Reference Patches

Generate LDI

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 21

disposed. Figure 3.2 elaborates on the step of Patch Categorization and Figure 3.3 depicts

the stage of formation of contours and the identification of sampling and visibility regions

there on. Figure 3.4 highlights the effect of the adaptive sampling method on the final re-

rendering engine. In the sections to follow, we shall go through each of these steps in

detail, defining and discussing the theories and considerations.

3.2 Patch Categorization

This step marks one of the most critical steps in the method of adaptive sampling, as it’s in

this step that we start from just a point cloud to a representation, which though isn’t as

detailed as a triangle mesh, is still informative enough for us to understand the geometry

of the scene and proceed to adaptively sample the object. It is necessary to clarify at this

point that the patches thus formed are only for guiding the stage of sampling. The eventual

rendering is still from the originally captured data.

3.2.1 Patch

Before going any further with the procedure of patch categorization, we explain the

concept of a patch, in the context of data sampling. A patch is regarded as any uniform

surface on the object (a surface without uneven bumps), which can wholly fit into the field

of view of the camera under consideration.

The purpose of defining a patch is to be able to summarize the geometry of the object in a

plane in 2 dimensions, so as to ensure that we get a rough sketch of the uniform sections

of the object. It’s worthwhile to note that a crude way of expressing adaptive sampling is

to say that more samples are needed for areas of the object which are not too uniform

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 22

(occluded by parts of the same surface or different surfaces), and lesser samples for those

sections of the object which are fairly smooth. Hence the need to be able to clearly

distinguish these various sections of the object.

3.2.2 Patch Constraints

Having gone through a layman’s definition of a patch, and its purpose, in this subsection

we attempt to formally define a patch. A patch is formally defined as all neighboring

points in the point cloud which satisfy the following constraints: (for more information on

the point cloud and the attributes of the points there-in, please refer to the next chapter,

section 4.3, titled Other Issues)

a) The normals between any two neighboring points in the spherical co-ordinate

system don’t differ by a preset δnϕ and δnθ.

b) The normals between the extreme two points of the patch, in the spherical co-

ordinate system don’t differ by more than a preset ∆nϕ and ∆nθ.

c) The Z values of any two neighboring points don’t differ by more than a preset δz.

This ensures that areas on two objects which have smooth transition, but are placed

apart in the viewing direction don’t end up being called a patch

d) The size of a patch both horizontally and vertically never exceeds the maximum

size that the field of view, θ, of the camera permits at that depth. This is calculated

as follows:

Taking a top view and denoting the size of the patch in any scan line with an edge, let the

first and last points of this edge be Smax, Smin. Suppose the orthogonal bisector of the

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 23

Figure 3.5: Patch Size Constraint (top view)

edge intersects the sampling circle at a point, and let the distance from the midpoint of the

edge to the circle be denoted as D. (The sampling circle will be explicitly defined in

section 3.3.2)

The size d of the patch is:

d = 2D tan (θ/2) (3.1)

The same criteria applies for the vertical extent, with the corresponding angle, ϕ. Given

the point cloud and given these constraints, the patches more-or-less as defined in section

3.2.1 are obtained and the whole point cloud is categorized.

3.2.3 Rectangularisation of Patches

We stated at the end of the previous subsection that we have categorized the point cloud

into patches, which are “more-or-less” as defined earlier. The reason why these patches

are still not exactly the way we defined is because, though the patches are uniform and if

seen from the top or bottom look like they occupy only 2-dimensions, they still have a

Smax

Smin

θ
d

D

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 24

non-uniform shape in the 2-dimensional plane. We hence attempt to break down these

patches obtained, into patches of shape that can be easily summarized in one dimension,

as a line. We choose a rectangle for our convenience and for the fact that it can be reduced

to a line along a scan line.

In order to break the patches gotten so far, into rectangles, we follow a step called the

rectangularisation of patches. In this step, for each of the patches thus identified, we find

the biggest rectangle that can fit into it, and cut that portion out. We follow the same

procedure for the remaining area in the patch, until we are left with areas, which are

smaller than a preset area. All the portions cut out from the patch in the process are

rectangularised components of the patch, and hence the term rectangularised patches.

It can hence be seen that a single patch obtained by patch categorization may later end up

as a few rectangularised patches.

3.2.4 Patch Merging

So far we have defined and discussed about how to theoretically get patches from the

point cloud. Practically, storing the entire sampled point cloud in the program’s heap may

not be feasible, owing to the highly dense sampling. A simpler and more practical

approach is discussed in this subsection.

We consider one reference image at a time, and find the patches from its point cloud. As

the size of individual images is much smaller, the heap constraint is no longer applicable.

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 25

As patches are being formed, they are checked for overlaps with patches found from

previous reference images.

Merging the patches is done by isolating the various vertical cross-sections, and

concentrating on the patches that overlap. If we are to find two sections of a patch that

need to be merged, we can be assured that they would have an overlap, owing to the high

density of the samples. Care should be taken to make sure that the patch, as it’s being

merged, still satisfies the patch constraints, over the border and as a whole.

Redundant patch areas can be found and dropped, when patches are found which overlap

by an extent more than the approximation involved in the step of rectangularisation. The

section of the patch that is not redundant (which is now definitely smaller than the

maximum size a patch permits) can be merged with some other patch if need be.

It’s worthwhile to mention the effect of the sequence of the reference images, on the

eventual set of patches generated. The patch merging process is applied in a linear fashion,

with the patches being created in the current reference image, compared with the patches

thus formed, to check for an overlap. This makes the efficiency of the merging process

reliant on which reference image is considered next. The reduction in the data redundancy

is independent of this decision; however the number of patches generated, is not. A

recursive approach to make patch-merging independent of the sequence of the reference

images is computationally expensive. Also, this is unnecessary in situations where there is

a clearly defined sampling trajectory on which the reference images were captured. In our

system implementation, the reference images are considered in the same order that they

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 26

Figure 3.6: From a group of Rectangle Patches to a 2-D contour

were captured during the sampling camera traversal on the sampling trajectory. This

ensures maximum overlap between consecutive reference images, given that our sampling

trajectory was a circle.

3.3 Contour Formation, Sampling and Visibility Graphs

A contour, literally, stands for a 2-dimensional shape expressed as a line representation.

Our definition isn’t far from this meaning of contours. Having broken down the point

cloud into rectangularised patches, we are now in a position to form a skeleton of the

entire object.

3.3.1 Contour Formation

In the previous section, we discussed how we categorized the point cloud into a set of

rectangle patches. In this section, we attempt to make a skeleton out of these uniform

sections of the object.

Each patch obtained thus far, is labeled with a number. A scan line traversal is now

performed to see the patches that are encountered at each scan line. At the end of this scan

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 27

Algorithm 3.1: Contour Formation

line traversal, we have a set of patches traversed for each scan line. We group all the scan

lines with the same patch traversals together. Given these groups of patches, we try to

make one contour to represent each of these groups. The contour is basically the

representation of what we would see when viewed from the top. Each patch, since close-

to-constant in the 3rd dimension, and a rectangle in 2 dimensions, can be represented as

one line, as it would be when seen from the same plane in which it is present. Algorithm

3.1 depicts the pseudo code that summarizes the contour formation algorithm applied to

the rectangularised patches.

We hence have distinctly formed contours, representing various vertical segments of the

procedure FormContours (patch [])
 for k←0 to patch.size-1 //find patch demarcations in the vertical direction
 demarcations.add(patch[k].min_y)
 demarcations.add(patch[k].max_y)
 end for
 sort(demarcations) //ascending order

for j←0 to demarcations.size-1
 for k←0 to patch.size-1
 if patch[k].min_y = demarcations[j] //new patch starts at this demarcation
 temp.add(patch[k])
 else if patch[k].max_y = demarcations[j] //old patch ends at demarcation
 temp.remove(patch[k])
 end if

 end for

 if j = 0
 prev_demarcation = -1000
 else
 prev_demarcation = demarcation[j-1]
 end if

/form a contour with the patches in temp, and applicable for y from prev_demarcation to the current

 createContour (temp, prev_demarcation, demarcations[j])
end for

end procedure

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 28

object. Figure 3.6 depicts the formation of a contour from a simple group of rectangle

patches.

3.3.2 Sampling Arc

Having broken down the point cloud into a few 2D contours, the initial problem of

sampling now boils down to adequately sampling all the edges in each of these contours.

In this context we shall define the concept of a sampling arc. For any contour, we attempt

to sample the edges from the circumference of a circle, lying on the plane of the contour,

with its center at the object’s origin and a radius, which defines how close we can get to

the object during camera walkthrough. We call this the sampling circle. We can have

multiple concentric sampling circles for various resolutions.

For any edge, a sampling arc is defined as the arc of the sampling circle, such that from

any point on that arc, the edge under consideration has maximum visibility. To understand

the sampling arc better, we need to take a brief look at the concept of cameras and views.

Any camera has a view plane on to which any point seen from the camera is projected.

When we see through the camera, or take images with the camera, what we see is a

projection of the scene on to the camera’s view plane. The number of pixels on the view

plane does not necessarily have a one-to-one mapping with the number of actual points in

the world coordinate system.

The sampling arc of any edge can now be defined as the arc of the sampling circle,

defined by all those points on the circle’s circumference, from which the geometric

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 29

Figure 3.7: Sampling Arc

content of the pixels seen, as compared to what is seen from an orthogonal view of the

edge, is unchanged. Figure 3.7 depicts a contour, the object’s sampling circle and the

sampling arc of a particular edge labeled “e1” of the contour.

When an edge is sampled from a point on the sampling circle outside the sampling arc, we

end up sampling fewer pixels than can be seen from points on the sampling arc. We call

this phenomenon oblique sampling.

3.3.3 Determining the Sampling Arc

Having seen the definition and necessity of a sampling arc, we shall in this subsection see

how to find the sampling arc, given an edge and the sampling circle.

Suppose we choose a Cartesian st-coordinate system for the sampling circle with the

e1

Sampling
Arc

Sampling
Circle Contour

Figure 3.7: Sampling Arc

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 30

center of the circle placed at its origin and the t-axis parallel to the edge. Before actually

deriving the sampling arc, let us look at how the edge depth z, varies with respect to the

camera motion, as depicted in Figure 3.8. We define the edge depth, as the distance

between the midpoint of the edge and the camera placed on the sampling circle. The prime

sample point (so,to), is defined as the point of intersection of the edge’s orthogonal bisector

and the sampling circle. For any given edge, its prime depth, zo, is defined as the edge

depth when the camera is at the prime sampling point. The edge depth function Fz, which

is the edge depth as a function of the sampling point, can now be formulated as:

z’ =

Fz (s’, t’) =

∆s / cos (tan-1 ((zo - ∆t)/ ∆s)), ∆s ≠ 0 or ∆t ≠ 0
zo, ∆s = 0 and ∆t = 0

 (where ∆s = s’ - so, and ∆t = t’ - to)

 (3.2)

Now we are well equipped to derive the sampling arc, given any edge and the sampling

circle. We have discussed before, while defining the sampling arc, that there is no one-to-

one mapping between the actual points on the object and the pixels seen on the image

plane. It is clear that the maximum visibility for the surface associated with the edge is

obtained when seen from the prime sample point. However, as we would see further, this

maximal visibility extends to a certain span on either side of the prime sample point, on

the circumference of the sampling circle, giving us the sampling arc, where the best

possible view of the edge can still be maintained.

Our aim is to find a sampling arc, such that the same pixel resolution as seen from the

prime sampling point can be obtained for all points within the sampling arc. We observe

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 31

from Figure 3.7 that as we move away from the prime sample point, the number of points

on the edge projected to a pixel on the view plane will reduce. Suppose, when viewed

from the prime sample point, we establish clearly the largest segments on the edge which

map to at most two pixels on the view plane, we would end up dividing the edge into

several overlapping segments. Given that the length on the image plane, that these

segments correspond to, keeps reducing as we move away from the prime sample point,

we reach a stage where at least one of these segments corresponds to less than two pixels

on the image plane. It is clear that, this is the point that defines the end point of the

sampling arc. From Figure 3.8, we infer that the righter more the segment on the edge, the

more its reduction of size on the image plane, upon moving left. Also, given that the right

most and the left most segments of the edge, are the smallest, it is evident that one of these

would be the first of the segments to correspond to less than two pixels on the image

plane. We call these the critical segments of the edge.

Hence, the problem of finding the sampling arc boils down to finding the points on the

sampling circle where the two critical segments occupy 2 pixels. Before going further, we

need to acquaint ourselves with two camera dependent parameters. The pixel size ∆p is

the length of one pixel. Its corresponding edge segment is ∆pw. The camera distance f, is

the distance between the camera’s lens and the view plane.

We now term the pixel occupancy function, FW, as the number of pixels occupied by the

critical segments. Given that an edge has a right and left critical segment, we have a right

and a left pixel occupancy function, FWR, FWL. The sampling arc is thus determined by the

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 32

set (s’,t’) such that FWR (s’, t’) > 1 and FWL (s’, t’) > 1. Solving for this, the left end point

of the sampling arc is determined by the equation:

C4t4 + C3t3 + C2t2 + C1t + C0 = 0

Where C4 ,… C0 depends on edge end points, R and f.

(3.3)

C4 = M2 + K2 + P1
2 - 2KP1

C3 = 2P1P2 - 2MN - 2MK s0 - 2KP2 – 2MP1s0
C2 = 2KP1t0

4 - 2KP3 + 4KP1s0
2 + 2P1P3 + P2

2 - 2K2t0
2 + N2 + 2KN s0 – M2t0

2 + 2NP1s0 – 2MP2s0
C1 = 2MNt0

2 + 2KM s0t0
2 + 2P2P3 + 4KP2s0

2 + 2KP2t0
4 + 2NP2s0 - 2MP3s0

C0 = 2NP3s0 - N
2t02 – 2KN s0t0

2 + K2t0
4 + P3

2 + 4KP3s0
2 + 2KP3t0

4

K = (dS – 2s0) (2s0f – fdS – Z0 ∆d’)
M = 4fdSt0 + 4fdSZ0 – 8f s0t0 – 4fZ0s0 + 2Z0 (Z0+t0) ∆d’
N = 4fdSt0

2 + 2fdSZ0
2 + 4fdSZ0t0 - 4fZ0t0s0 - 8ft0

2s0 + Z0 ∆d’ (t0
2 + (Z0+ t0))

P1 = -4ft0 (Z0 + t0)
P2 = 8ft0

3 – 2fZ0
3 + 8ft0Z0

P3 = (t0
2 + (Z0 + t0)

2) (f Z0
2 – 2ft0

2)
Z0 = ((t1 + t2)/2 – √(R2 - (s1 + s2)/2))
∆d = d0/10
d’ = ((f/Z0) ∆d)
ds = ((d0/2) – ((Z0/f)d’))

Figure 3.8: Sampling Arc derivation

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 33

F

Figure 3.9: Sampling Graph: (a) Graph of the sampling arcs of all the constituent edges of
the contour (b) Numbered arc segments formed, owing to overlaps of the sampling arcs

The reason why this is a four dimensional equation is because we haven’t defined the

visible side of the edge in our input and hence have sampling arcs on both sides, front and

back. We then select the correct sampling arc from this. A detailed derivation can be

found in Appendix A.

3.3.4 Sampling Graph

Having established how to find out the sampling arc, given any edge, we shall now look at

how we use these sampling arcs to sketch the sampling graph and hence find the points to

sample from. For all of the edges in the contour, we find the sampling arcs, as explained in

the previous subsection, and transform them from their st-coordinate system to the world

coordinate system. Figure 3.9 (a) depicts the sampling graph sketched by the sampling

arcs obtained for all the edges.

(a) (b)

1
2 3

4

5

6

7
8

9
10

11

r

g
p

o
b

c

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 34

Arc Segment

Associated Edges

1 r
2 r,b
3 b
4 b,c
5 c
6 c,o
7 o
8 o,p
9 p
10 p,g
11 g

Table 3.1: Tabulation of Arc Segments and their associated edges

Figure 3.10: Directed Graph of arc segments

We then number the various arc segments formed on the circumference of the sampling

circle, as depicted in Figure 3.9 (b). Next, we tabulate every arc segment against its

associated edges in the contour, as in table 3.1. A directed graph is sketched with each of

1

3

5

9

7

11

2

6

4

8

10

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 35

Algorithm 3.2

these arc segments as nodes. Node-A directed to Node-B in the graph indicates that the

edges associated with the arc segment represented by Node-A, is a subset of the edges

associated with the arc segment represented by Node-B. Figure 3.10 depicts the directed

graph plotted for the example in Figure 3.9.

The set of critical arc segments is the set of minimum number of arc segments required to

cover all the edges of the contour. This is determined by considering the set of arc

segments represented by the leaf nodes in the directed graph. We perform a greedy

algorithm on this set of arc segments, by selecting one arc segment at a time, to maximize

procedure MakeSampleSet (criticalarcs [])
 for k←0 to criticalarcs.size-1 //for all critical arcs
 while criticalarcs[k].edges.size>0 //as long as some edge is yet to be sampled

 for j←criticalarcs[k].beginpt to criticalarcs[k].endpt
 for i←0 to 180
 for a←0 to criticalarcs[k].edges.size-1
 calculate(pixel_occupancy for criticalarcs[k].edges[a])
 //z’, d/2 and θ3 values change with angle i and edge a

 if pixel_occupancy satisfactory
 edgescovered.add(criticalarcs[k].edges[a])

 //this edge can be sampled from here
 end if
 end for
 if edgescovered.length > max //if this is the most optimum solution thus far
 solution.remove(edgescovered)
 solution.add(j, i, edgescovered) //point and angle to sample the edge set
 max = edgescovered.size
 end if
 end for
 end for
 criticalarcs[k].remove(solution.edgescovered) //these edges are sampled
 end while
 end for
 return solution
end procedure

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 36

the number of edges covered thus far. The result of this step is the set of critical arc

segments, which in the case of the example depicted in Figure 3.10, is {2, 6, and 10}.

We now have a set of critical arc segments and the list of edges that can be sampled from

each of the critical arc segments. The set of adequate samples for the contour are obtained

by sampling from selected points on these critical arc segments, trying to maximize the

number of edges sampled in a single sample, ensuring that all the edges of the contour are

covered. This is illustrated by the pseudo code depicted by Algorithm 3.2.

3.3.5 Visibility Region and Visibility Graph

This subsection describes the generation of the patch lookup table for selection of

reference views during camera walkthrough. We have seen that the whole sampled object

is categorized into uniquely defined surfaces, and we have associated each of those

surfaces with a particular camera point to sample from, or in other terms, a reference

image. It is now straightforward that given a point in the camera walkthrough, the set of

reference images needed to generate the required synthetic view can be obtained, if the

surfaces that can be seen from that point are known. This is essentially what the reference

view selection algorithm does. We shall elaborate this later in the chapter, but for the

moment it has been established that it is valuable to know the surfaces that can be seen

from any given point in the camera walkthrough.

Towards this aim, we define visibility region of an edge as the region in the plane of the

edge, where at least some part of the edge is visible. As an edge can be seen from any

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 37

Figure 3.11: Visibility Graph: Graph sketching the visibility regions of all the constituent
edges of the contour, highlighting the overlap of the various visibility regions thus formed

region in front of it, the visibility region for an edge is as depicted in Figure 3.11. A

visibility graph for a contour is defined as the graph sketching the visibility regions of all

the constituent edges of the contour, highlighting the overlap of various visibility regions.

We see from Figure 3.11 that a number of regions are formed, given any contour, with

each region having a clearly defined set of visible edges. It must be noted that a region

1

2

3

4
5

6
7

8

9

10

11

12
13

14
15

16

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 38

radii index angle index (o) angles (i) edge
1000, 2000 (40,165) (45,150) p
1000, 2000 (210,320) (215,315) b

formed by the overlap of visibility regions of two edges, defines the region from which

both the edges are visible. It might be worthwhile to note that, while sketching the

visibility graph, we need not worry about the visibility regions inside the sampling circle,

as by the definition of the sampling circle, this sets the boundary for the camera

walkthrough.

Table 3.2, depicts a sample patch lookup table generated for the visibility graph. This

table can be used to lookup the patches that can be seen from any point in the camera

walkthrough (y’, r’, θ’), where y’ is the scan line and (r’,θ’) are the spherical coordinates

at that plane. The visibility arcs on the inner and outer bounding circles, define a visibility

region for an edge. All of the regions depicted in Figure 3.11 were formed by the

overlapping of these regions. In spherical coordinates, if the visibility arcs for edge e are

defined as (r,θi1), (r,θi2), (R,θo1), (R,θo2), a point (r’,θ’), during the camera walkthrough

would be able to see all edges, whose index satisfy the constraints,

 r < r’ < R ,
 θ’ lies between θo1 and θo2 , and
 of θo1 and θo2, let θoc be closer to θ’, then
 if |θo1 - θo2| <= 180, h’>= h
 if |θo1 - θo2| >= 180,

either int(θ’/90) <> int(θo1/90) and int(θ’/90) <> int(θo2/90)
or h’< h

 where h is R.sin(tan-1(r.sin(|θic - θoc|)/(R-r.cos(|θic - θoc|))))
 and h’ is R.sin(tan-1(r’.sin(|θ’ - θoc|)/(R-r’.cos(|θ’ - θoc|))))

Table 3.2: Patch lookup table (y = 10 to 18)

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 39

3.4 Rendering Engine

We have seen thus far, the proposed improvements and how it works. In this section we

shall look at the rendering stage of the pipeline and how our sampling method improves

the synthetically generated views.

The stage of rendering is marked by a camera walkthrough of a camera in a 3D space

around/in a particular object/scene sampled prior to this stage. This step is broadly a

composition of identifying the camera’s position in the 3D space, identifying the reference

images required to render the synthetic view at this point and finally generating the

synthetic view from the reference images thus found. We shall briefly go through each of

these sections constituting the re-rendering phase of the pipeline, throwing light on the

effect of the new method of sampling.

3.4.1 Reference View Selection

Given the camera/user’s co-ordinates, we need to generate a synthetic view that can be

seen from that location. In generating the synthetic view, we rely on the data collected in

the sampling stage. The process of Reference View Selection is to select the best set of

reference images to adequately generate the current view.

Methods thus far include computations like closest reference images to the co-ordinates

under consideration, approximation of geometrically adequate surfaces required and so on,

which need to compromise rendering speed to allow for computationally expensive

calculations during a real time walkthrough.

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 40

In our method, as the visibility graphs had been calculated from the 2D contours, during

pre-computation, the process of Reference View Selection now boils down to a mere look

up of the patch lookup table thus formed, based on the camera’s coordinates, to elicit the

patches visible from those co-ordinates.

3.4.2 LDI Generation

This is one of the very critical sections of the LDI rendering engine, as this is the routine,

which handles the generation of our LDI, as the name suggests. The core of this routine

lies in re-projecting the pixel from the reference patches to the LDI. There are a few points

to be considered, though the basic concept involved is pretty straightforward. Our

reference patches have a camera matrix (C1, C2 …), associated with them, which indicate

the camera viewing cum perspective transformations. This matrix basically transforms a

point in the world coordinates to a point in the screen coordinates. Similarly our Layered

Depth Image stores its camera details in its own camera matrix (CL), which essentially

transforms any world point to the LDI’s screen.

This implies that a pixel in a reference patch is transformed into its corresponding point in

the world coordinates, by multiplying it with the inverse of the reference patch’s camera,

C1. This point in the world coordinates when further multiplied by the LDI’s camera

matrix, CL, would transform the point to the LDI’s screen. This is exactly what our re-

project routine does.

CL * C1
–1 * [x1, y1, z1, w1]T = [xL, yL, zL, wL] T (3.4)

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 41

Figure 3.12: LDI re-projection and interpolation

The pixel on the input reference patch’s image-plane taken by camera C1, is x1, y1, z1 and

the coordinates of that pixel re-projected onto the LDI camera CL’s view-plane is xL, yL,

zL. Let us now throw light on certain considerations that ought to be taken care of during

this re-projection. The re-projection basically gives the x, y and z values of the pixel on

the LDI cameras view-plane. The x and y specify the pixel position on the view-plane.

The z is the value we make use of, to find out an appropriate layer to associate this pixel

with. Our values of z in the previous layers help us determine the layer number for this

pixel. If we find a pixel getting re-projected to an x, y position that already has one or

more pixels in some layers, we verify the z of this new pixel with those in the layers and

create a new layer in an appropriate position for this new pixel. Now what happens if two

pixels re-project to the same x and y and their z’s map to the same layer number? In such

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 42

cases, we interpolate the two pixels and place the interpolated pixel in the position defined

by that x, y and layer number.

Let us consider the example depicted by Figure 3.12 for a better understanding of this

routine. Pixels a, b, c belong to reference patch taken by camera C1. Of course these pixels

are in the world coordinate system, and they were in different pixel positions on C1’s

image plane. On re-projecting these world points to the LDI camera CL, we find that a

maps to an x and y position which has no pixels stored in it yet. So a goes to layer 1 of this

x, y positions buffer. Similarly b goes to layer 1 of a different x, y positions buffer. Now

when we re-project c, we find out that it maps to the same x, y position as b. We also

notice that c’s z is less than b’s z, which implies that c should be in a layer ahead of b.

Hence b is pushed to layer 2, and c is put in layer 1. Now consider another pixel d, taken

from a reference image taken by another camera C2. Now this pixel maps to the same x, y

position as b and c, and the z of d is less than b but is almost same as c. In such a case

what we do is that we interpolate the values of c and d and place it in the layer in which it

originally was, i.e. layer 1.

3.4.3 Incremental Warping

Warping is the final stage of the LDI rendering engine. The Incremental warping is the

routine, which handles the LDI system, between any two successive LDI generations.

Before discussing what this routine does, let us look at the scenario without an

incremental warping stage.

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 43

Basically we generate an LDI with our LDI generate method, and display the pixels in the

current LDI for the walkthrough. What happens when we move our camera a little? The

LDI might still be the same in terms of the LDI number and the reference images set, but

yet the position and the layers of the various pixels would have changed. This implies that

the LDI we have, despite having the same input, is no longer valid, and needs a re-

projection for the current view. And like we have discussed, LDI generation is a

computationally expensive routine, and calling it every time our walkthrough camera

moves would make the rendering process quite slow. Hence, the need for an incremental

warping computation.

The key to this incremental warping computation is the realization that the re-projection

equation, when factorized, is nothing but a sequence of additions/increments to a base

case. Essentially redundant calculations are avoided and additions are preferred over

multiplications.

From (3.4)

(CL) * C1 –1 * [x1, y1, z1, w1]T = [xL, yL, zL, wL] T

Let T1,L = (CL) * C1 –1, so (3.3) becomes

 T1,L * [x1, y1, z1, w1]T = [xL, yL, zL, wL] T (3.5)

We know that for a particular x and y, we have a lot of z values depending on the number

of layers in that layered depth pixel. For all these pixels, except the first one, the

redundant calculation of T1,L * (x, y, z,w) can be avoided.

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 44

(3.5) can be hence written as,

 T1,L * [x1, y1, 0, w1]T + z1 * T1,L * [0, 0, 1, 0]T = [xL, yL, zL, wL] T

 � start + z1.depth = [xL, yL, zL, wL] T (3.6)

Eqn (3.6) can be used for all the layers of a particular layered depth pixel, by using just a

z1*depth increment over the start calculated for the first layer, instead of re-projecting

every time. Also, the computation expense of start can be minimized. We know that we

would be following a particular scan line order to warp each of the layered depth pixels.

Assuming we go from left to right, top to bottom, our layered depth pixels would be ones

with a constant y and with successive x’s for each row.

So,

T1,L * [x1+1, y1, 0, w1]T = T1,L * [x1, y1, 0, w1]T + T1,L * [1, 0, 0, 0]T

 (start for next layered depth pixel) = start + xiner (3.7)

Eqns (3.6) and (3.7) are the core of the incremental warping computation. Depth and

Xiner being constant throughout, all we need to do is calculate start once for every row by

a matrix multiplication. Then calculate the re-projected coordinates for each of the pixels

in that (x, y) position, by just adding the pixels z multiplied by depth to the start

calculated. For the next layered depth pixel, start can be calculated by adding Xiner to the

previous start. Of course, if we move to the next scan line, we need to calculate the start

again.

One last thing yet to be discussed is the scan line ordering. We assumed during the

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 45

Figure 3.13: McMillan’s ordering

previous discussion that we move from left to right and top to bottom. But that’s just an

instance of the many possible cases. For calculating and displaying the pixels in the new

LDI, we use the McMillan’s ordering algorithm on our old LDI [McMillan, 1995].

Essentially what this algorithm says is that, depending on the sign of w of the camera, the

ordering of the pixels is determined either towards the epipolar point or away from it. The

epipolar point is defined as a projection of the output camera’s location in the input

cameras view-plane, i.e. the intersection of the line joining the two camera locations with

the input camera’s image plane. The epipolar point might divide the view-plane into at

most 4 quadrants. When w is negative the ordering is to move away from the epipolar

point, starting from the pixel next to the epipolar point to all the way to the corner of the

Layered Depth
Image Camera

Output Camera Epipolar Point

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 46

quadrant and the view-plane, in a column wise, row based approach, in each quadrant.

This is depicted in Figure 3.13.

3.4.4 Splatting and Hole Filling

Unlike in the previous methods, this stage, which is generally vital to the rendering

pipeline, is absolutely unnecessary in our case. The stage of splatting is generally used to

fill up all the holes that might and would be generated owing to the lack of adequate

sample data. The misery shown in the amount of sample data owes to the fact that, more

the sample data, slower the LDI Generation.

In our case, since the pre-computation has dealt with the problem of holes and occlusions

by adaptively sampling the object based on its geometry, while re-rendering, we can be

assured that we wouldn’t be faced with that problem again.

3.4.5 Summary of the Rendering Engine

We have discussed in the previous subsections how the LDI is rendered and synthetic

views are generated during the walkthrough. We noticed that our proposed method

significantly changed the step of Reference View Selection and eliminated the Splatting.

However, the lack of a significant difference in the remaining steps doesn’t entirely mean

that the output is not affected. Owing to the fact that the reference samples/patches found

are exactly adequate, and that there’s hardly any redundancy in the patches, the LDI

Generation, which is in fact a re-projection of the reference images, is much faster and

hence we have a faster walkthrough with much better quality.

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 47

3.5 Comparison

In the previous chapter, we had briefly gone through the related work in sampling for

image-based rendering. In this chapter, we have thus far proposed and discussed our

method. In this section, we shall compare and contrast our method with the related work

so far.

3.5.1 Original LDI

In the original LDI method [Shade et al., 1998], the basic framework for rendering with

Layered Depth Images was introduced. Though particular care was taken to render

realistic synthetic views, it was largely a compromise between speed and realism. The

following paragraph discusses this work and illustrates its shortcomings.

In this work, the reference images were depth images taken from a range scanner. A

uniform sampling approach, with a fixed interval was used to accumulate the sample

reference set. The re-rendering phase was marked by the creation of LDIs with a set of

“proximal” reference images, from amongst the initially sampled set of images. The visual

artefacts owing to inadequate/occluded data or a difference in resolution between the

synthetic view to be generated and the sampling rate of the reference images were

approximately covered by a splatting technique.

The problem with this approach was that the reference view selection was not complete.

There was no absolute definition of a proximal set of reference images. The LDIs hence

created weren’t substantial, in quality. The step of splatting did cover up most of the holes

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 48

but with possibly incorrect data. This step also accounted for much of the render time

computational time.

Our method excels this work by defining the completeness of the reference set of images

required for rendering. The speed of selection and the elimination of the step of splatting

ensure a real time rendering. The availability of adequate information and the lack of

splatting improve the quality of the synthetic views.

3.5.2 LDI Tree

Of the two problems of holes and gaps resulting because of inadequate sampling, the LDI

Tree implementation [Chang et al., 1999] solved the issue of gaps. This implementation

used a hierarchical partition scheme, which preserves the sampling rate of the reference

images by adaptively selecting an LDI from the LDI cluster for each pixel. The various

reference images and sections of the LDI were categorized into an LDI Tree, which could

be looked up to the depths dictated by the current sampling rate. Essentially what this

means is that, samples of a particular scene at different resolutions are collected, and

depending on the resolution required during camera walkthrough, the appropriate sample

is chosen.

However, since nothing much was done to prevent holes, the sets of samples at each

resolution were inadequate just like in the original LDI.

We tackle the issue of gaps by sampling from not just one sampling circle, but a set of

concentric sampling circles. The issue of gaps and hence the sampling rate of the synthetic

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 49

view need not be taken care of, as it is implicitly solved in our method. The visibility

regions are mapped to the patches sampled, and this information is stored in the hash

tables. At run time, it is irrelevant which sampling rate is currently required, as the current

position clearly defines a visibility region and hence the patches required. Hence we see

that the patches of the correct sampling rate are seamlessly used in the rendering pipeline.

Also, since there’s no explicit difference in the approach for different sampling rates, the

theory of adequacy of the samples at a particular sampling rate implicitly applies

throughout.

3.5.3 Best Next View

This approach aims to select the next view for the sampling system, given some already

acquired views of the object. Two criterions often considered in solving this problem are

the visibility criterion, which attempts to maximize the number of surfaces not seen thus

far, and the quality criterion, which aims to improve the quality of the surfaces sampled.

A volumetric representation, termed as the voxelmap, is generated at each cycle of best

next view computation in one such work [Massios, Fisher, 1998]. The voxels thus scanned

are marked empty, seen or unseen depending on the visibility from the new view. The

seen voxels carry a quality property, which is estimated by the aggregate normals of all

the points sampled in a particular voxel.

This method relies heavily on the set of steps taken previously, to an effect, working like

the greedy algorithm. A wrong choice by the heuristic at one stage would imply an

inefficient solution. Also, since the quality criterion encourages the inclusion of reference

��������	
�� ���� � � � �� ��� �� � �� �� ��� ������ � ��� � � ���

 50

images until a particular threshold is reached, there’s no check on the redundancy whilst

sampling. Also, the selection of an image owing to some visibility criterion only means

that it has the most number of surfaces not seen thus far. It doesn’t however dictate that

the surfaces seen thus far are not present in this image, which all the more adds up to the

issue of redundancy.

On the contrary, in our method, unlike a view centric approach, we consider the whole

picture before deciphering which samples to use for rendering. This eliminates the

problem of incorrect intermediate steps of a greedy algorithm. Also, since the overlap

between the patches is minimal and most of it is eliminated during patch merging, the

issue of redundancy is almost non-existent. The process of finding the critical sampling

arcs ensures that the sample data collected for the stage of rendering is minimal.

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 51

DESCRIPTION OF SYSTEM IMPLEMENTATION

We have discussed the proposed improvements to the LDI system in the previous chapter.

Before going through the results and improvements seen with this new method, we shall,

in this chapter, go over the various components used for the system implementation. We

shall also briefly describe some of the issues dealt with, during the system

implementation.

4.1 Hardware Components

One of the important hardware components required was the Range Scanner, a camera

that samples not just the color at each point, but also the depths. The scanner used in our

case was the Minolta Vivid 900, which samples a color map and a range map at the same

time for any given viewpoint.

Given the bulky nature of the Range scanner, it was found more meaningful to move

around the object whilst sampling, than the camera itself. Under the assumption that

uniform lighting conditions prevailed and that no specular reflectance was observed on the

surface of the object being sampled, this was a valid alternative. Towards this effect, a

mount was built and placed over the turntable to hold the object to be sampled. This

apparatus has two degrees of freedom; rotation about a vertical axis with precision of ±0.2

degrees and vertical translation with a precision of ±0.2 cm. Figure 4.1 illustrates this

apparatus and the setup used for sampling.

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 52

Figure 4.1: Set-up for sampling

The object, the final part of the sampling setup, was so chosen to illustrate the ability of

our proposed method to handle occlusions and non-uniform surfaces to great precision.

The object used was a mannequin, placed behind two vertical rods which catered for most

of the occluded regions. The existence of several non-uniform surfaces on the mannequin

was also noticeable. The system was also tested on a simpler object, a pooh bear, for

comparison. Figure 4.2 illustrates a few snapshots of these objects.

4.2 Software Components

The program was developed in Open GL, with C++ using Microsoft Visual C++

development environment. The object was scanned by the Range scanner, and the

Table

Range
Camera

Object

Adjustable
Mount

Knob to adjust the
height

Turntable

Vertical
Motion

Rotational
Motion

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 53

(a)

(b)

Figure 4.2: The sampled objects (a) Mannequin (b) Pooh Bear

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 54

scanner software output format was converted to a simpler color map and depth map

format. The color map was represented as Portable Pixel Map images (.ppm files), while

the range map was represented using text files (.txt files). A one to one correspondence

could be found between the (r,g,b) pixels in the color map and the (x,y,z,flag) surfels of

the range map.

The camera, often taken for granted in most rendering systems, constitutes one of the key

components of the rendering engine. We represent the camera as a 4x4 transformation

matrix, such that given a Camera placed at a point c1 and given its representation as matrix

C1, any point in the global co-ordinate system could be re-projected into the camera’s

view plane by a simple matrix multiplication between the point co-ordinates and the

camera matrix C1.

4.3 Other Issues

In this section, we shall look at some of the issues involved in the system implementation.

4.3.1 Range Map

Each range image file has a three-line header giving the number of rows and columns in

the image. This is followed by four image sections. The first is the so-called 'flag' image,

where a pixel value of 1 means the corresponding (x, y, z) values at that pixel are valid. If

the flag value is zero, the (x, y, z) components for that pixel are ignored. Following the

flag image is the image of X-coordinates, the image of Y-coordinates, and the image of Z-

coordinates. All are floating-point images. The X and Y images are required only when

calculating the normals. The Z-values are the range/depth under consideration. A very

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 55

high value was used for the depth, in cases where the pixels don’t correspond to the object

but to some background. However we don’t look at these values owing to the flags

section.

4.3.2 Surface Normals

The surface normals are not extracted from the object but are found from the range maps

obtained. The surface normal is defined as the 3D vector, originating at the pixel under

consideration and orthogonal to the surface at that point.

The algorithm written, essentially takes in as input a range map and returns the surface

normals for the width * height pixels in the range map. The basic idea of this algorithm is

to approximate the normal at any pixel position by averaging the 8 normals that

correspond to the surrounding 8 neighboring surfaces. To better understand this, let us

consider Fig 4.3.

Let X be the pixel for which we are trying to find the surface normal. Points 1-8 are the

neighboring pixels. We aim to approximate the normal at X, by averaging the normals of

the surfaces depicted by labels A-H. The normals of these surfaces A-H can be calculated

by the knowledge of the 3D coordinates of the triangle’s vertices describing the surface.

For instance, the normal of surface A can be approximated to the cross product of the

vectors X->1 and X->2. By similar cross product calculations, the normals of surfaces A-

H are estimated. The Normal N, at X is approximated to the average of these 8 surface

normals. The N is then normalized.

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 56

Fig 4.3: Surface Normal Approximation

The basic idea is to consider the image plane to be placed horizontally, with vertical lines

coming out of each pixel, indicating the depth values at the corresponding pixels. Now if

we place a cloth on these lines, we can see a surface that’s formed by these depth values.

Essentially what we are trying to do in the normal calculation is to estimate the normals of

the 8 surfaces formed by the cloth around one line, and average them out to find the

normal of the pixel under consideration.

There is one consideration that ought to be discussed in approximating the surface

normals. The 8 neighboring points may not exist or even if they do, they may not lie on

the same surface. Essentially we are talking about cases where a few of these 8 pixels lie

on the edge of a surface or are on a whole other surface altogether. To take into account

such cases, we keep track of the normals involved, by making use of the angle the normal

makes with the normal of the image plane. The normals are then sorted based on these

angles. The extreme cases, where the angles differ a lot from the rest of the normals, imply

3

5

8 7 6

4 x

2 1

A B

C

D

E F

G

H

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 57

that they are the normals for an edge or for a different surface. In such a case, we discard

those points and don’t involve them in calculating the normal.

The normals thus calculated are converted back to a global coordinate system. Suppose

the surface normals are calculated from the range map corresponding to the camera C1, the

normals in the global co-ordinate system would be:

nw
 = C1

T ns (4.1)

(this is so because, given any point p in the image’s viewing co-ordinates, by definition,
 ns

Tps = 0 � ns
T (C1 C1

-1) ps = 0 � (ns
T C1) (C1

-1 ps) = 0 � (ns
T C1) pw = 0 -- (1)

 where, pw is the point in world co-ordinate system.
 But by definition, in the world co-ordinate system,
 nw

Tpw = 0 -- (2)
 from (1) and (2), nw

T = ns
T C1 � nw

 = C1
T ns)

4.3.3 Uniform Dense Sampling

Most image based rendering engines have the problem of striking a balance between

excessive sampling and inadequate object information. These are the problems posed with

uniform sampling. A dense uniform solution would ensure that none of the original data

are lost, but would result in an extremely slow walkthrough. We have the luxury to sample

the object densely, as we are going to filter out what’s redundant and not required. Hence,

our first stage of sampling is a very straightforward dense sampling approach.

We place the object over a turntable, as depicted in Fig 4.1, earlier in this chapter, to

ensure an accurate rotational motion to ±0.2-degree precision. The mount underneath the

��������	
�� �� ������ � �� ��� � � ��� ��� ���� �� ����� �

 58

object helps the object to move up and down to an accuracy of ±0.2cm. Together, these

two motions simulate the positioning of the camera anywhere on a cylindrical surface

surrounding the object.

For the sample implementation, we used the MIDDLE Lens and sampled along only one

sampling circle. But as we discussed in section 3.5.2, we can sample along various

concentric sampling circles, to ensure that we only use up those patches while re-

rendering which correspond to the sampling rate of the current camera view. Samples

taken with a TELE Lens along a sampling circle close to the object, and with a WIDE

Lens along a sampling circle far from the object, can be added to the existing sample set,

to further enhance the rendered output and frame rate.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 59

RESULTS AND DISCUSSIONS

In the previous chapters, we have described the proposed system and its sample

implementation. In this chapter, we shall analyze the results and improvements seen with

this proposed system and compare the results thus obtained, with those of other systems.

5.1 Results

The results observed from the sample implementation are promising. As can be seen from

Figure 5.1, the quality of the rendered output is comparable to current systems using

splatting. No holes are observed, and unlike splatting, the rendered output is completely a

result of the sampled data, and not of any interpolation or synthetic approximations.

The rendering speed can be qualified as quite fast, as a real time walkthrough shows no

signs of processing lag. Such a high speed would have been impossible, if all of the data

initially sampled were to be retained for rendering the synthetic views during the camera

walkthrough. With our method, we retained the adequate data to ensure the high quality of

the rendered output, and disposed the redundant data, to ensure the high real time

rendering speed noticed in the camera walkthrough.

Figure 5.1, depicts some snapshots taken during the camera walkthrough of our system for

two objects – (a) a mannequin and (b) pooh bear†.

† Sparse Pooh-bear samples were downloaded from the web, and subsequently morphed to synthetically
create dense samples of the same. The poor quality of the Pooh bear output largely owes to this process of
interpolation during morphing and the inadequacy of original data.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 60

 Figure 5.1 (a): Synthetic Views generated by the improved system

��������	
�� �� ��� ��� � �� �� � � � �� � �

 61

Figure 5.1 (b): Synthetic Views generated by the improved system

��������	
�� �� ��� ��� � �� �� � � � �� � �

 62

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Adaptively filtered set of patches from the sampled set of
reference images of 296x222 resolution, sampled along a circle
around the object, at regular intervals of 2.82ο

Size: 97.3 Mb

Frame Rate: 10.7 fps

Patch loading time: Proportional to the size of a patch.
Typical Patch size: 2 Kb
Time to load a patch: 0.71 milliseconds

(a) Mannequin Object

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Adaptively filtered set of patches from the sampled set of
reference images of 200x200 resolution, sampled along a circle
around the object, at regular intervals of 2.82ο

Size: 44.1 Mb

Frame Rate: 13.7 fps

Patch loading time: Proportional to the size of a patch.
Typical Patch size: 2 Kb
Time to load a patch: 0.71 milliseconds

(b) Pooh Bear Object

Figure 5.2: Statistical information for the improved system

Figure 5.2 shows the frame rate observed during the camera walkthrough and other

statistics of the system.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 63

5.2 Comparison

In this section we shall compare the results discussed in the previous section with a

sample implementation of the original LDI system [Shade et al., 1998], with uniform

sparse sampling (with and without splatting) and uniform dense sampling.

5.2.1 Uniform Sparse Sampling

With a uniform sparse sampling, with reference images taken along a circular orbit around

the object, at regular intervals of 19.74 degrees, the following results were obtained. It is

observed from Figure 5.3 (a) that the quality of the rendered views is much better in the

improved system when compared to that of the sparsely sampled non-splatted system. In

the case of the splatted system, very little difference is noticed, as both the systems have

no holes. However, while the improved system’s rendered output is a result of the original

sampled data, the same can not be said about the latter, which is noticed on close

observation. In case of Figure 5.3 (b), where the pooh-bear object is not as complex as the

mannequin object, the difference in quality is still noticeable, though not as much as in the

former case. This implies that in case of objects with large portions of smooth uniform

surfaces, adaptive sampling wouldn’t have a clear advantage over sparse sampling, as

most sections of the surface are covered even by a uniform sparse sampling system.

In case of both the examples, the speed of the improved system is comparable to the

sparsely sampled non-splatted system, while it is better when compared to the splatted

version. Figure 5.4 shows the frame rate observed during the camera walkthrough and

other statistics of the sparse system. Table 5.1 at the end of this chapter illustrates the

statistical difference between these systems.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 64

Figure 5.3 (a): Synthetic Views generated by the sparsely sampled LDI system, without splatting

��������	
�� �� ��� ��� � �� �� � � � �� � �

 65

Figure 5.3 (a): Synthetic Views generated by the sparsely sampled LDI system, without splatting

��������	
�� �� ��� ��� � �� �� � � � �� � �

 66

Figure 5.3 (b): Synthetic Views generated by the sparsely sampled LDI system, with splatting

��������	
�� �� ��� ��� � �� �� � � � �� � �

 67

Figure 5.3 (b): Synthetic Views generated by the sparsely sampled LDI system, with splatting

��������	
�� �� ��� ��� � �� �� � � � �� � �

 68

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Reference images of 296x222 resolution, sampled along a circle around the
object, at regular intervals of 19.74ο

Size: 40.6 Mb

Frame Rate: 12.2 fps

Image loading time: Proportional to the size of an image.
Reference Image size: 2.25 Mb
Time to load an image: 0.8 seconds

(i) Mannequin Object

System Configuration: CPU: Pentium-4, 1.6 GHz system
RAM: 256 MB

Input Data: Reference images of 200x200 resolution, sampled along a circle around the
object, at regular intervals of 19.74ο

Size: 24.3 Mb

Frame Rate: 15.3 fps

Image loading time: Proportional to the size of an image.
Reference Image size: 1.35 Mb
Time to load an image: 0.5 seconds

(ii) Pooh bear Object

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Reference images of 296x222 resolution, sampled along a circle around the
object, at regular intervals of 19.74ο

Size: 40.6 Mb

Frame Rate: 7.1 fps

Image loading time: Proportional to the size of an image.
Reference Image size: 2.25 Mb
Time to load an image: 0.8 seconds

(i) Mannequin Object

(a)

��������	
�� �� ��� ��� � �� �� � � � �� � �

 69

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Reference images of 200x200 resolution, sampled along a circle around the
object, at regular intervals of 19.74ο

Size: 24.3 Mb

Frame Rate: 9.3 fps

Image loading time: Proportional to the size of an image.
Reference Image size: 1.35 Mb
Time to load an image: 0.5 seconds

(ii) Pooh bear Object

Figure 5.4: Statistical information for the sparsely sampled LDI system.

(a) without splatting. (b) with splatting

5.2.2 Uniform Dense Sampling

With a highly dense uniform sampling with reference images taken along a circular orbit

around the object, at regular intervals of 2.82 degrees, the results obtained are as depicted

in Figure 5.5.

It is observed that the quality of the rendered views of the improved system is comparable

to that of the dense sampled system in both the examples, despite the fact that the dense

sampled system had a lot more input data at its disposal. The speed of the improved

system is much better when compared to the dense sampled system. Figure 5.6 illustrates

the statistical information observed with the uniform dense sampled system in case of both

the examples – (a) Mannequin object and (b) Pooh bear object.

(b)

��������	
�� �� ��� ��� � �� �� � � � �� � �

 70

Figure 5.5 (a): Synthetic Views generated by the densely sampled LDI system.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 71

Figure 5.5 (b): Synthetic Views generated by the densely sampled LDI system.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 72

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Reference images of 296x222 resolution, sampled along a
circle around the object, at regular intervals of 2.82ο

Size: 286 Mb

Frame Rate: 1.3 fps

Image loading time: Proportional to the size of an image.
Reference Image size: 2.25 Mb
Time to load an image: 0.8 seconds

(a) Mannequin Object

System Configuration: CPU: Pentium-4, 1.6 GHz system

RAM: 256 MB

Input Data: Reference images of 200x200 resolution, sampled along a
circle around the object, at regular intervals of 2.82ο

Size: 170.1 Mb

Frame Rate: 3.1 fps

Image loading time: Proportional to the size of an image.
Reference Image size: 1.35 Mb
Time to load an image: 0.5 seconds

(b) Pooh bear Object

Figure 5.6: Statistical information for the densely sampled LDI system.

5.2.3 Summary

Table 5.1, illustrates the statistical difference between our adaptive sampling system and

the previous systems – the sparse sampling system, with and without splatting, and the

dense sampling system, for both the examples of the mannequin and pooh bear objects.

��������	
�� �� ��� ��� � �� �� � � � �� � �

 73

Sample Implementation of Original LDI System
[Shade et al., 1998]

Attributes Our Improved
System

Sparsely Sampled
(no splatting)

Sparsely Sampled
(with splatting)

Densely Sampled

Input Data Size

97.3 Mb 40.6 Mb 40.6 Mb 286 Mb

Rendering Speed /
Frame Rate

Fast
10.7 fps

Fast
12.2 fps

Average
7.1 fps

Slow
1.3 fps

Reference View
Selection

Pre-computed Patch
Lookup Table

Closest Reference Images during walkthrough

Splatting

No No Yes No

Holes

No Yes Mostly No No

Quality

Good Poor Average Good

(a) Mannequin Object

Sample Implementation of Original LDI System
[Shade et al., 1998]

Attributes Our Improved
System

Sparsely Sampled
(no splatting)

Sparsely Sampled
(with splatting)

Densely Sampled

Input Data Size

44.1 Mb 24.3 Mb 24.3 Mb 170.1 Mb

Rendering Speed /
Frame Rate

Fast
13.7 fps

Fast
15.3 fps

Average
9.3 fps

Slow
3.1 fps

Reference View
Selection

Pre-computed Patch
Lookup Table

Closest Reference Images during walkthrough

Splatting

No No Yes No

Holes

No Yes Mostly No No

Quality

Good Poor Average Good

(b) Pooh bear Object

Table 5.1: Comparison of the different systems

It can be noticed that the frame rates of our adaptive system is comparable to that of the

sparse system without splatting and is a lot more than the dense system. From the figures

��������	
�� �� ��� ��� � �� �� � � � �� � �

 74

5.1 and 5.5, it’s also noticed that the quality of our adaptive system is comparable to the

high quality of the dense sampling system.

In case of the mannequin object, a significant difference in quality was noticed between

the sparse system and our adaptive system. This owes to the fact that a sparse system

couldn’t capture all of the visible surfaces of an object as complicated as the mannequin,

as most surfaces were visible only from certain view points in the sampling camera

trajectory. However, in case of the pooh bear object, which had a lot fewer occluded and

non uniform surfaces, the quality of the adaptive system is only slightly better than the

sparse system. This is also reflected in the comparison of the sample-data sizes of the

sparse system and our adaptive system. In case of the pooh-bear, the data captured to

adaptively cover all the visible surfaces was not much more than what was captured with

uniform sparse sampling.

��������	
��� � �� � �� �

 75

CONCLUSION

Sampling issue has been an important and challenging problem in the area of Image Based

Rendering. In particular, in rendering frameworks like the Layered Depth Image Based

Rendering approach, where a considerable knowledge of the geometry of the scene is

known in addition to the acquisition of sample images, there has always been scope to

address the sampling issue. The task is complicated because of the reliance of the problem

on the structure of the object.

In this thesis, we proposed a method to improve the Layered Depth Image system, by

adaptively sampling a scene, to avoid various computations during rendering to make sure

that a decent synthetic view is generated within an acceptable time frame. The quality of

the output is enhanced, owing to the fact that the synthetic view is not generated by

interpolating or splatting neighboring pixels, but with original sampled data. In addition to

the improvisation of the quality during rendering, the rendering speed is enhanced by the

pre-computed patch lookup table, which simplifies the reference view selection process to

a simple lookup of a hash table.

In the evaluation of our proposed method, we demonstrated the advantages of this

approach by considering an object with occlusions, and quite a number of non-uniform

surfaces. It was established that even an object of such complexity, which could have

otherwise been difficult to render without an extremely dense uniform sampling, was

rendered much more accurately than a splatted synthetic image. The rendering speed was

��������	
��� � �� � �� �

 76

comparable to sparse sampling, and better than the splatted system. We hence successfully

implemented an adaptive LDI system, with enhanced realism and fast rendering. This is

an improvement over the previous LDI, with a sparse sample set and a method of splatting

to cater for the visual artifacts.

To summarise, the following goals have been achieved:

• A Layered Depth Image framework has been implemented, that enables

rendering of complex 3-D environments, catering for absence of holes and

visual artefacts in the modeled world.

• An efficient approach has been devised to tabulate the pre-acquired set of

imagery, to ensure fast reference view selection and rendering of the synthetic

views.

• A method has been formulated which retains the realism of the 3-D

environment, through dense samples of the real world, and yet achieves a

rendering engine which is as fast as a sparse sampled LDI system.

��������	
�� � �� ��� � ��

 77

FUTURE WORK

Based on the proposed method of improving the Layered Depth Image system, this

chapter discusses the future prospects in the area, worth considering.

7.1 Reflectance Properties

In this thesis, the object surface was assumed not to exhibit specular reflection. The reason

for this was the fact that we were attempting to sample the whole region space with

minimal number of camera viewpoints, meaning, with least redundancy of sampled data.

However, exhibition of directional reflectance properties would imply that a surface

sampled obliquely would differ from its view from the front. To retain the reflectance

properties, either more views would be required for the same surface to minimize

computations whilst rendering or the reflectance properties must be deciphered, negated

from the samples, and re-applied while rendering.

There is scope for further enhancing the patch recognition and the sampling graph

generation methods, by including the aspect of reflectance properties of the surface being

scanned. The method to sample, adapting to both the shape and the texture of a surface

can be challenging.

7.2 Lighting Effects

With a robust skeleton of the entire scene being rendered, there is considerable scope for

including lighting effects like shadows, inter-reflectance and refraction with minimal cost.

��������	
�� � �� ��� � ��

 78

Since the geometry information was not just gathered and understood, and instead was put

to use to frame a clearly mapped skeleton for the rendering process, the hash tables which

define exactly which surfaces are under consideration from any point in the walkthrough,

could be put to good use for calculating the lighting effects.

7.3 Three-Dimensional Adaptive Sampling

In this thesis, the sampling problem was addressed, by adaptively sampling the object by

considering its 2-dimensional vertical cross-sections. The sampling arcs depicted the

points on the sampling circle, from where an edge (representing a patch of the object) on

the plane under consideration could be effectively sampled. The visibility regions

demarcated the walkthrough area, into horizontal segments, each segment determining the

visible surfaces of the object from any camera coordinate in the segment.

This work fails to exploit the possible extension of adaptive sampling in the three-

dimensional scope. When calculating the sampling points, to sample the required set of

reference patches to effectively capture all visible surfaces of the object, the sampling

points were determined in a 2-dimensional context. This doesn’t consider the concept of

sampling arcs in the vertical scope, resulting in sampling more points than can be seen on

the view plane and the possibility of data redundancy amongst patches sampled in

different 2-dimensional contexts. In addition, in a scenario where there is vertical

occlusion, the visibility regions thus formed would not indicate the fact that some of the

patches are occluded by vertical occlusion, resulting in unnecessary rendering of data

which cant be seen from a given camera point. The scan line information in the patch

lookup tables can only filter out patches which don’t fit into the vertical field of view of

��������	
�� � �� ��� � ��

 79

the camera and can’t provide information of lack of visibility owing to vertical occlusions.

There is considerable scope for extending the work of adaptive sampling to exploit the

possible three-dimensional extension. This would further reduce the size of the reference

sample data and significantly bring down the number of points rendered in case of objects

with a lot of vertical occlusion. The adaptive sampling approach can be extended to three

dimensions by approaching the problem of determination of a sampling arc, by attempting

to find the sampling spherical-cap. Also, the concept of visibility regions and patch

lookup table could be extrapolated to cater for the vertical angle of view of the

walkthrough camera, where the visibility region would be a region of space determined by

a surface similar to a tessellated sphere rather than a two-dimensional contour.

7.4 Experiments on more complex scenes

In this research, the adaptive sampling approach was put to test on two objects, a

mannequin with two rods in front of it, and a pooh-bear. Experiments can be conducted on

more complex scenes comprising of objects with a lot more concave surfaces or a

combination of complex objects. Also, the current experiments were conducted by

sampling at only one sampling rate. As already stated, the method supports samples of

different sampling rates, being capable of rendering at the resolution of the walkthrough

camera. Experiments to zoom into a higher sampling rate, with camera coordinates

stationed at a point of lower sampling rate could be other ways to analyze the behavior of

the adaptive system.

The solution could be extended to consider a three dimensional environment rather than a

��������	
�� � �� ��� � ��

 80

group of objects, where the camera is not outside the cylinder encapsulating the objects,

but is inside of it. The modification to the sampling-arc derivation and the construction of

the patch lookup table to cater for the same, might be an interesting area to explore.

����������

 81

REFERENCES

[Agrawala et al., 2000] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich and Laurent

Moll. Efficient image-based methods for rendering soft shadows. Proceedings of

the conference on Computer graphics, 2000, pp. 375-384.

[Aliaga et al., 1999] Daniel Aliaga, Jon Cohen, Andrew Wilson, Eric Baker, Hansong

Zhang, Carl Erikson, Kenny Hoff, Tom Hudson, Wolfgang Stuerzlinger, Rui

Bastos, Mary Whitton, Fred Brooks and Dinech Manocha. MMR: An interactive

massive model rendering system using geometric and image based acceleration.

Proceedings of the 1999 symposium on Interactive 3D graphics, 1999, pp. 199 –

206.

[Angel, 2000] Edward Angel. Interactive Computer Graphics: A top down approach with

OpenGL. 2nd Edition, Addison Wesley Longman, Inc., United States of America,

2000.

[Ashikhmin et al., 2000] Michael Ashikhmin, Simon Premoze and Peter Shirley. A

Microfacet-based BRDF Generator. Proceeding of the 27th Annual Conference on

Computer Graphics, 2000, Jul 2000, pp. 65 - 74.

[Bastos et al., 1999] Rui Bastos, Kenneth Hoff, William Wynn and Anselmo Lastra.

Increased photorealism for interactive architectural walkthroughs. Proceeding of

the 1999 symposium on Interactive 3D graphics, 1999, pp. 183 - 190.

[Boivin, Gagalowicz, 2001] Samuel Boivin and Andre Gagalowicz. Image-Based

Rendering of Diffuse, Specular and Glossy Surfaces from a single image.

Proceeding of the 28th Annual Conference on Computer Graphics, 2001, Aug

����������

 82

2001, pp. 107 - 116.

[Cabral et al., 1999] Brian Cabral, Marc Olano and Philip Nemec. Reflection space image

based rendering. SIGGRAPH, Proceedings of the SIGGRAPH 1999 annual

conference on Computer graphics, 1999, pp. 165 - 170.

[Chai et al., 2000] Jin-Xiang Chai, Xin Tong, Shing-Chow Chan and Heung-Yeung Shum.

Plenoptic Sampling. Proceedings of the SIGGRAPH 2000 annual conference on

Computer graphics, 2000, pp. 307 – 318.

[Chang et al., 1999] Chun-Fa Chang, Gary Bishop and Anselmo Lastra. LDI Tree: A

hierarchical representation for image-based rendering. Proceedings of the

SIGGRAPH 1999 annual conference on Computer graphics, 1999, pp. 291 – 298.

[Chen, 1995] Shenchang Eric Chen. QuickTime VR: An image based approach to virtual

environment navigation. Proceedings of the 22nd annual ACM conference on

Computer graphics, 1995, pp. 29 - 38.

[Chen and Willams, 1993] Shenchang Eric Chen and Lance Williams. View Interpolation

for image synthesis. Proceedings of the 20th annual conference on Computer

graphics, 1993, pp. 279 – 288.

[Cohen et al., 1997] Michael Cohen, Marc Levoy, Jitendra Malik, Leonard McMillan and

Eric Chen. Image-based rendering: really new or déjà vu?. Proceedings of the 24th

annual conference on Computer graphics & interactive techniques, 1997, pp. 468 –

470.

[De Bonet, 1997] Jeremy S. De Bonet. Multiresolution sampling procedure for analysis

and synthesis of texture images. Proceedings of the 24th annual conference on

Computer graphics & interactive techniques, 1997, pp. 361 – 368.

[Debevec et al., 2000] Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker,

����������

 83

Westley Sarokin and Mark Sagar. Acquiring the Reflectance Field of a Human

Face. Proceedings of SIGGRAPH 2000, Jul 2000, pp. 145 – 156.

[Fleshman et al., 1999] Shachar Fleishman, Daniel Cohen-Or and Dani Lischinski.

Automatic Camera Placement for Image-Based Modeling. Proceedings of the

Pacific Graphics ’99, 1999.

[Garcia, 1998] Miguel Angel Garcia. A Two-Stage Algorithm for Planning the Next

View from Range Images. Proceedings of the British Machine Vision Conference’

97, 1998, pp. 720 – 729.

[Gortler, Li-wei, Cohen, 1997] Steven J. Gortler, Li-wei He and Michael F. Cohen.

Rendering Layered Depth Images. Harvard Computer Science Technical Report

tr9709, Harvard University, 1997.

[Gortler et al., 1996] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, Michael F.

Cohen. The Lumigraph. SIGGRAPH, Proceedings of the 23rd annual conference

on Computer graphics, 1996, pp. 43 - 54.

[Grossman, Dally, 1998] J.P. Grossman, William J. Dally. Point Sample Rendering.

Proceedings of the 9th Eurographics workshop on rendering, Jun 1998, pp. 181 -

192.

[Heckbert, 1989] P.Heckbert. Fundamentals of texture mapping and image warping.

Technical report, CS Division, U. C Berkeley, Jun 1989.

[Huang et al., 1998] Ho-Chao Huang, Shung-Hua Nain, Yi-Ping Hung and Tse Cheng.

Disparity-based view morphing: A new technique for image based rendering.

Proceedings of the ACM Symposium on Virtual reality software and technology

1998, 1998, pp. 9 – 16

[Jensen et al., 2001] Henrik Wann Jensen, Fredo Durand, Michael M. Stark and Simon

����������

 84

Premoze. A Physically-Based Night Sky Model. Proceedings of the 28th Annual

Conferenceon Computer Graphics 2001, Aug 2001, pp. 399 - 408

[Joy, 1997] Kenneth I. Joy. The depth buffer visible surface algorithm. Online Computer

Graphics Notes, Computer Science Department, University of California, Davis,

1997.

[Kang, 1997] Sing Bing Kang. A survey of image-based rendering techniques. Cambridge

Technical Report Series, August 1997.

[Katayama et al., 1999] Akihiro Katayama, Yukio Sakagawa, Hiroyuki Yamamoto and

Hideyuki Tamura. Shading and shadow casting in image-based rendering without

geometric models.�Proceedings of the conference on SIGGRAPH 99: conference

abstracts and applications, 1999, pp. 275.

[Lee, 1998] Lee Liang Chye. An Image-Based approach to render complex 3-D

environments. MSc. Thesis, National University of Singapore, 1998.

[Levoy and Hanrahan, 1996] Marc Levoy and Pat Hanrahan. Light field rendering.��

Proceedings of the 23rd annual conference on Computer graphics, 1996, pp. 31 -

42.

[Leung and Chen, 2001] Wing Ho Leung and Tsuhan Chen. Line-Space Representation

and Compression for Image-Based Rendering. Carnegie Melon Technical Report

AMP01-02, 2001.

[Lluch et al., 2004] Javier Lluch, Emilio Camahort and Roberto Vivo. An Image-Based

Multiresolution Model for interactive foliage rendering. WSCG’04, the 12th

International Conference in Central Europe on Computer Graphics, Visualization

and Computer Vision, 2004, pp. 507.

[Massios, Fisher, 1998] Nikolaos A. Massios and Robert B. Fisher. A Best Next View

����������

 85

Selection Algorithm incorporating a Quality Criterion. Proceedings of the British

Machine Vision Conference (BMVC) ’ 97, Sep, 1998, pp. 780 - 789.

[McMillan, 1995] Leonard McMillan. A list-priority rendering algorithm for redisplaying

projected surfaces. UNC-Chapel Hill Computer Science Technical Report #95-

005, University of North Carolina, 1995.

[McMillan and Bishop, 1995] Leonard McMillan and Gary Bishop. Plenoptic Modeling:

An image based rendering system. Proceedings of the 22nd annual ACM

conference on Computer graphics, 1995, pp. 39 – 46.

[Namboori, Teh and Huang, 2004] Ravinder Namboori, Hung Chuan Teh, Zhiyong

Huang. An Adaptive Sampling Method for Layered Depth Image: Computer

Graphics International, Jun, 2004, pp. 206-213

[Preetham et al., 1999] A.J. Preetham, Peter Shirley and Brian Smits. A Practical Analytic

Model for Daylight. Proceedings of the 26th Annual conference on Computer

graphics, 1999, pp. 91 – 100.

[Oh et al., 2001] Byong Mok Oh, Max Chen, Julie Dorsey and Fredo Durand. Image-

Based Modeling and Photo Editing. Proceedings of the 28th annual ACM

conference on Computer graphics, Aug 2001, pp. 433 – 442.

[Pfister et al., Gross, 2000] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar and

Markus Gross. Surfels: Surface Elements as Rendering Primitives. Proceedings of

the ACM SIGGRAPH '00, Jul, 2000, pp. 335 – 342.

[Pito, 1995] Richard Pito. A solution to the next Best View Problem for Automated CAD

Model Acquisition of Free-form Objects Using Range Cameras, Technical Report

95-23, GRASP Lab, University of Pennsylvania, May 1995.

[Popescu et al., 1998] Voicu Popescu, Anselmo Lastra, Daniel Aliaga and Manuel de

����������

 86

Oliveira Neto. Efficient warping for architectural walkthroughs using layered

depth images. Proceedings of the conference on Visualization '98, 1998, pp. 211 –

215.

[Sato et al., 1997] Yoichi Sato, Mark D. Wheeler and Katsushi Ikeuchi. Object shape and

reflectance modeling from observation. Proceedings of the 24th annual conference

on Computer graphics & interactive techniques, 1997, pp. 379 - 387.

[Seitz and Dyer, 1996] Steven M. Seitz and Charles R. Dyer. View Morphing.

Proceedings of the 23rd annual conference on Computer graphics, 1996, pp. 21 -

30.

[Shade et al., 1998] Jonathan Shade, Steven Gortler, Li-wei He and Richard Szeliski.

Layered depth images. Proceedings of the 25th annual conference on Computer

Graphics, 1998, pp. 231 - 242.

[Shum, He, 1999] Heung-Yeung Shum and Li-wei He. Rendering with Concentric

Mosaics. Proceedings of the 26th annual conference on Computer Graphics, Jul

1999, pp. 299 - 306.

[Sillion et al., 1991] Francois X. Sillion, James R. Arvo, Stephen H. Westin and Donald

P. Greenberg. A global illumination solution for general reflectance distributions.

Proceedings of the 18th international conference on Computer graphics, 1991,

pp. 187 - 196.

[Stuerzlinger, 1998] Wolfgang Stuerzlinger. Imaging all Visible Surfaces. Computer

Science Technical Report TR98-010, Mar 1998

[Wand et al.2001] Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf

����������

 87

der Heide and Wolfgang Straber. The Randomised z-Buffer Algorithm:

Interactuve Rendering of Highly Complex Scenes. Proceedings of the conference

on Computer graphics, SIGGRAPH ’01, 2001, pp. 361 - 370.

[Westin et al., 1992] Stephen H. Westin, James R. Arvo and Kenneth E. Torrance.

Predicting reflectance functions from complex surfaces. Proceedings of the 19th

annual conference on Computer graphics, 1992, pp. 255 - 264.

[Xiao et al., 1991] Xiao D. He, Kenneth E. Torrance, Francois X. Sillion and Donald P.

Greenberg. A comprehesive physical model for light reflection. Proceedings of the

18th international conference on Computer graphics, 1991, pp. 175 - 186.

[Xiao et al., 1992] Xiao D. He, Patrick O. Heynen, Richard L. Phillips, Kenneth E.

Torrance, David H. Salesin and Donald P. Greenberg. A fast and accurate light

reflection model. Proceedings of the 19th annual conference on Computer

graphics, 1992, pp. 253 - 254.

[Yu and Malik, 1998] Yizhou Yu and Jitendra Malik. Recovering photometric properties

of architectural scenes from photographs. Proceedings of the 25th annual

conference on Computer Graphics, 1998, pp. 207 - 217.

[Yu et al., 1999] Yizhou Yu, Paul Debevec, Jitendra Malik and Tim Hawkins. Inverse

global illumination: recovering reflectance models of real scenes from

photographs. Proceedings of the SIGGRAPH 1999 annual conference on

Computer graphics, 1999, pp. 215 – 224

[Zhang, Chen, 2001] Cha Zhang and Tsuhan Chen. Generalised Plenoptic Sampling.

Carnegie Melon Technical Report AMP01-06, Sep 2001.

[Zwicker et al., 2001] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar and Markus

����������

 88

Gross. Surface Splatting. Proceedings of the 28th Annual Conference on computer

graphics, SIGGRAPH 2001, Aug 2001, pp. 371 - 378

����������

A1

APPENDIX A

Sampling Arc Derivation

The following steps describe the mathematical derivation of the Sampling Arc formulae
mentioned in section 3.3.3 of Chapter 3.

A.1 Initial Conditions

1. Co-ordinate System: (s,t)
2. s–axis is parallel to the edge
3. t–axis is perpendicular to the edge
4. Centre of the Sampling Circle lies at the origin

A.2 Given Input

1. Radius of the Sampling Circle (R)
2. Focal length of Camera (f)
3. Left - end point of line segment (s1,t1)
4. Right - end point of line segment (s2,t2)

A.3 Derived Input

2 2
0 2 1 2 1

0

2 2
0 1 2 0

0 1 2

0 1 2 0

0

0

() ()

/ 1 0

(() / 2)

() / 2

(() / 2)

(/ 2)

(/)
s

d s s t t

d d

Z t t R s

s s s

t t t Z

d d d

d f Z d

= − + −
∆ =

= + − −
= +
= + −
= − ∆
′∆ = × ∆

����������

A2

A.4 Derivation of the left end-point of the Sampling Arc

Let, the left end-point of the Sampling Arc be (,)s t′ ′
So, we have,

2 2 2

0

0

2 2
0

0

()

()

() (1)

c o s /
t a n () /

s t R

s s s

t t t

Z s Z t

s Z

Z t s

φ
φ

′ ′+ =
′∆ = −

′∆ = −

′ = ∆ + − ∆ ←
′= ∆

= − ∆ ∆

From Figure A.2, we have the relation,

0 0

0 0

() / / 2

 ((/ 2)) (2)

s

s

d d f d Z

d d f Z d

′′� ∆ + =

′ ′∴ = − ∆ ←

Figure A.1: Sampling Arc

����������

A3

Also, we have,

0

0

0 0

/ /

 (/)

 ((/ 2) (/)) (3)

s s

s s

s

d f d Z

d Z f d

d d Z f d

′� =

′∴ =
′∴ = − ∆ ←

According to the figure,

1

1

1
2

t a n ((/ 2) /) (4)

() (5)

t a n (/) (6)

s

s

d d f

d f

θ
θ φ θ

θ φ

−

−

′′ ′= + ∆ ←
= − ←

′′= − ←

By Sin Rule, we have,

1
2

1
1 0

/ sin / sin(tan (/)) (7)

/ sin / 2 sin(tan ((/ 2) /)) (8)

s s

s

Z d d f

Z d d d f

θ

θ

−

−

′′′ = ←

′′′ ′= + ∆ ←

From Equations (7) and (8), we have,

Figure A.2: Sampling Arc derivation

����������

A4

1 1
1 2 0

1 1

1 1
0

sin / sin (2 /) sin(tan ((/ 2) /)) / sin(tan (/))

 sin(tan ((/ 2) /)) / sin(tan (/))

2 / (cot(tan ((/ 2) /)) cot) /(cot(tan (/

s s s

s s

s s s

d d d d f d f

d d f d f

d d d d f d f

θ θ

φ φ

φ

− −

− −

− −

′′ ′′′� = × + ∆

′′ ′′′= − + ∆ −

′′ ′′′∴ = + ∆ −

0 0

)) cot)

 ((/(/ 2)) cot) /((/) cot)

(2) / / 2((cot) (/ 2))

s s

s s s

f d d f d

d d d f d f d d d

φ

φ φ

φ

−

′′ ′′′= + ∆ − −

′′ ′′′ ′∴ − = − ∆ − × + ∆

2
0 0

2 2
0 0

After putting the value of from Eqn (3) , we have :

(cot)(/ 2) / 4

cot ((cot / 2)) ((/ 4) / 2) 0

s

s s

s s

d

f d d d d f Z

d d d f d f Z f d

φ

φ φ

′′ ′′ ′− + ∆ =

′′ ′′ ′ ′∴ + ∆ − + − ∆ =

2

0 0

0 0

2
0

2

2

 ((/ 4) / 2)

 (/ 2)((/ 2))

 / 2

cot ((cot / 2)) 0

 (((cot / 2)) ((cot / 2)) 4 cot) / 2 cot (9)

s

s s

s

Put M d f Z f d

f d f Z d

d f Z

d d d f M

d f d f d M

φ φ

φ φ φ φ

′= − ∆
′= − ∆

=

′′ ′′ ′∴ + ∆ − + =

′′ ′ ′∴ = − ∆ ± − ∆ − ←

2 2 1
0 2

2 2 1 1
0

1 2

Now , we equate the values of from Eqns (1) and (7) :

 () sin / sin(tan (/))

 () sin(tan (/)) / sin(tan (/))

 ((sin cot(tan (/))) cos) (

s s

s s s

s s

Z

s Z t d d f

s Z t d d f d f

d d f s Z

θ

φ

φ φ

−

− −

−

′

′′∴ ∆ + − ∆ =

′′ ′′∴ ∆ + − ∆ = −

′′∴ − = ∆ + 2
0

2 2
0

2 2 2 2
0 0 0

)

 sin ((/) cot) ()

 () /(())((/) cot) ()

s s

s s

t

d f d s Z t

d Z t s Z t f d s Z t

φ φ

φ

− ∆

′′∴ − = ∆ + − ∆

′′∴ − ∆ ∆ + − ∆ − = ∆ + − ∆

����������

A5

2 2
0 0

2 2
0 0 0

2 2
0 0

2 2
0 0

 (/) co t (()) /(())

 / ((()) /(())) (/())

 / (()) /(())

 () /(()) (10)

N ow , equate the v

s s

s s

s s s

s s s

f d s Z t d Z t

f d s Z t d Z t s Z t

f d s Z t d s d Z t

d fd Z t s Z t d s

φ′′∴ − = ∆ + − ∆ − ∆

′′∴ = ∆ + − ∆ − ∆ + ∆ − ∆

′′∴ = ∆ + − ∆ + ∆ − ∆

′′∴ = − ∆ ∆ + − ∆ + ∆ ←

2

2 2
0 0

2

2 2
0

alues o f from E qns (9) and (10) :

 (((cot / 2)) ((co t / 2)) 4 co t) / 2 co t

 () /(())

 ((co t / 2)) ((cot / 2)) 4 co t

 2 /(())

s

s s

s s

d

f d f d M

fd Z t s Z t d s

f d f d M

fd s s Z t d s

φ φ φ φ

φ φ φ

′′

′ ′∴ − ∆ ± − ∆ − =

− ∆ ∆ + − ∆ + ∆

′ ′∴ − ∆ ± − ∆ − =

∆ ∆ + − ∆ + ∆

2 2 2
0

2 2 2 2
0

N ow , put ((co t / 2))

 4 co t (2 /(()))

 4 co t ((2 /(())))
s s

s s

T f d

T M fd s s Z t d s T

T M fd s s Z t d s T

φ

φ
φ

′= − ∆

∴ ± − = ∆ ∆ + − ∆ + ∆ −

∴ − = ∆ ∆ + − ∆ + ∆ −

2 2 2 2 2 2
0

2 2
0

2 2
0

2

 (4 /(()))

 (4 /(())) 4 cot 0 (11)

Put (())

After putting the values of cot and in Eqn (11), we get :

 (/) (/

s s

s s

s

s

f d s s Z t d s

Tfd s s Z t d s M

Q s Z t d s

M

fd s Q f

φ

φ

∴ ∆ ∆ + − ∆ + ∆

− ∆ ∆ + − ∆ + ∆ + = ←

= ∆ + − ∆ + ∆

∴ ∆ + 0 0

2
0 0 0

(2 ())) (/) 0

Now, put the value of .

 (/) (/(2 ())) (/) (/(2 ())) 0s

Z Z t T Q

T

fd s Q f Z Z t f Q d s Q Z t

− ∆ − =

′∴ ∆ + − ∆ − + ∆ ∆ − ∆ =

����������

A6

0 0 0

2 2 2
0 0 0 0

On solving it, we get :
 (/) (() /(2 ())) 1

 2 () (())
s

s s

d s Q Qf Z s d fZ Z t

fd sZ Z t Q fZ Z s d f s t d s

′∴ − ∆ = + ∆ ∆ − ∆ −
′∴ ∆ − ∆ = − ∆ ∆ − ∆ + ∆ + ∆

0

2 2
0 0 0 0 0 0 0 0 0

2 2
0 0 0 0 0

2
0 0 0

Put ()

 2 (()) ((2) () 2())

 ((2) (2) 2)

Put

 ((2)(2))

s s

s

s s

t t t

fd Z s Z t t d s s t Z t Z t t

fZ ft s s f fd Z d ft t

T s

T d s s f fd Z d

′∆ = −
′ ′∴ ∆ + − = − ∆ + + + − + ×

′ ′− + ∆ − − ∆ +

= ∆
′∴ − − − ∆

2 2
0 0 0 0

2 2
0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0 0 0 0

 (((2)(2 2))

 ((2)(() 2())))

 ((() 2())(2 2)) 0

s

s

T d s fZ ft ft t

s f fd Z d t Z t Z t t

t Z t Z t t fZ ft ft t

′+ − − + +
′ ′− − ∆ + + − +

′ ′+ + + − + − + =

2
0 0 0

0 0 0 0 0 0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0

2 3 2 3
0 0 0 0 0 0 0

 [(2)(2)]

 [(4 8 4 4 2 ())

 (4 2 4 4 8 (()))]

 [(4 ()) (8 8 2)

s s

s s

s s s

T d s s f fd Z d

T fd t fs t fd Z fs Z Z d Z t t

fd t fd Z fd Z t fs Z t s ft Z d t Z t

ft Z t t ft ft Z fZ t

′∴ − − − ∆
′ ′+ − + − + ∆ + −

′+ + − − + ∆ + +
′ ′+ − + + + −

2 2 2 2
0 0 0 0 0

2

 ((())(2))] 0

 () 0

t Z t fZ ft

T K T Mt N P

+ + + − =

′∴ + − + =

0 0 0

0 0 0 0 0 0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0

,
(2)(2)

(4 8 4 4 2 ())

(4 2 4 4 8 (()))

s s

s s

s s s

Where

K d s s f fd Z d

M fd t fs t fd Z fs Z Z d Z t

N fd t fd Z fd Z t fs Z t s ft Z d t Z t

′= − − − ∆
′= − + − + ∆ +

′= + + − − + ∆ + +

����������

A7

2
1 2 3

1 0 0 0

3 2 3
2 0 0 0 0

2 2 2 2
3 0 0 0 0 0

2

0

2 2
0

2 2 2
0

2

(4 ())

(8 8 2)

(())(2)

 (() () 4) / 2

 ()

 ()

Put ()

 4 2 ()

 4 (2 (

P Pt P t P

P ft Z t

P ft ft Z fZ

P t Z t fZ ft

T N Mt Mt N KP K

s s

R t s

X N Mt

X X KP K R t s

X KP K

′ ′= + +
= − +

= + −

= + + −

′ ′∴ = − ± − −
′= −

′= − −

′= −

′∴ ± − = − −

∴ − = 2 2 2
0

2 2 2 2 2
0 0

))

 () () 0

R t s X

K R t s X R t s P

′− − −

′ ′∴ − − − − − + =

2 2 2 2
0 0 0

2 2 2 2
0 0 0

2 2 2 2 2
0 0 0

2 2 2 2 2 2
0 0 0 0 0

 (2)() () 0

 () / (2)

 (() / (2)) ()

 (() / (2)) 2 () / (2)

Ks X s R t P Kt Kt

s P Kt Kt Ks X R t

s P Kt Kt Ks X R t

P Kt Kt Ks X s P Kt Kt Ks X

′ ′∴ + − − + − + =

′ ′∴ + − + + = −
′ ′∴ + − + + = −

′ ′∴ − + + + − + +
2 2 2

0

2 2
0

 (())

 ()

R s t

t t

′= − −
′= −

2 2 2 2 2 2 2 2
0 0 0 0 0 0

2 2 2 2 2 2 2 2
0 0 0 0 0 0

2 4 2 4 2 2 2 2
0 0

() 2 ()(2) ()(2) 0

 () 2 () (4 2 2 2 ())

 2 0

P Kt Kt s P Kt Kt Ks X t t Ks X

X t t Ks X t t P Ks Kt Kt s N Mt

K t K t K t t P

′ ′ ′∴ − + + − + + + − + =
′ ′ ′ ′∴ − + − + − + + −

′ ′+ + − + =

����������

A8

2 2 2 2 2
0 0 0

2 2 2
0 0 0

2 4 2 4 2 2 2
0 0

Put the value of as ().

 () () 2 ()()

 (4 2 2 2 ())

 2

X N Mt

N Mt t t Ks N Mt t t

P Ks Kt Kt s N Mt

K t K t K t t

′−
′ ′ ′ ′∴ − − + − −

′ ′+ − + + −
′ ′+ + − + 2

2
1 2 3

2 2 2 2 2 2 2
0 0 0

2 2 2 2
1 2 3 0 0 0

2 4 2 4 2 2 2
0 0

0

Put the value of as ().

 (2)() 2 ()()

 ()(4 2 2 2 ())

 2 (

P

P Pt P t P

N M t MNt t t Ks N Mt t t

Pt P t P Ks Kt Kt s N Mt

K t K t K t t P

=

′ ′+ +
′ ′ ′ ′ ′∴ + − − + − −

′ ′ ′ ′+ + + − + + −
′ ′+ + − + 2 2

1 2 3

4 2 2 2
1 1

3
1 2 0 2 1 0

2 2 2 2 2
1 0 3 1 0 1 3 2

2 2 2 2
0 0 0 0 1 0 2

2 2
0 0 0 2 3

) 0

 [(2)]

 [(2 2 2 2 2)]

 [(2 2 4 2

 2 2 2 2)]

 [(2 2 2

t P t P

t M K P KP

t PP MN MKs KP MPs

t KPt KP KPs PP P N

K t KNs M t s NP s MP

t MNt KMs t P P

′ ′+ + =

′∴ + + −
′+ − − − −
′+ − + + + +

− + − + −
′+ + + 2 2

2 0 2 0 0 2 0 3

2 2 2 2 4 2 2 2
0 3 0 0 0 0 3 3 0 3 0

4 2 2 2)]

 [(2 2 4 2)] 0

KP s KP t s NP s MP

s NP N t KNs t K t P KP s KPt

+ + + −

+ − − + + + + =

Hence the left end-point of the Sampling Arc can be written as,

4 2 2 2
1 1

3
1 2 0 2 1 0

2 2 2 2 2
1 0 3 1 0 1 3 2

2 2 2 2
0 0 0 0 1 0 2

2 2 2 2
0 0 0 2 3 2 0 2 0 0

 [(2)]

 [(2 2 2 2 2)]

 [(2 2 4 2

 2 2 2 2)]

 [(2 2 2 4 2 2

t M K P KP

t PP MN MKs KP MPs

t KPt KP KPs PP P N

K t KNs M t s NP s MP

t MNt KMs t P P KP s KPt s

′� + + −
′+ − − − −
′+ − + + + +

− + − + −
′+ + + + + + 2 0 3

2 2 2 2 4 2 2 2
0 3 0 0 0 0 3 3 0 3 0

2)]

 [(2 2 4 2)] 0

NP s MP

s NP N t KNs t K t P KP s KPt

−

+ − − + + + + =

����������

A9

0 0 0

0 0 0 0 0 0 0 0 0

2 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0

3 2 3
2 0 0 0 0

2 2
3 0 0 0

,

(2)(2)

(4 8 4 4 2 ())

(4 2 4 4 8 (()))

(4 ())

(8 8 2)

(())

s s

s s

s s s

Where

K d s s f fd Z d

M fd t fs t fd Z fs Z Z d Z t

N fd t fd Z fd Z t fs Z t s ft Z d t Z t

P ft Z t

P ft ft Z fZ

P t Z t

′= − − − ∆
′= − + − + ∆ +

′= + + − − + ∆ + +
= − +

= + −

= + + 2 2
0 0(2)fZ ft−

A.5 Derivation of the right end-point of the Sampling Arc

Let, the Right end-point of the Sampling Arc be, (,)s t′ ′
So, we have,

2 2 2

0

0

2 2
0

0

()

()

() (1)

c o s /

ta n () /

s t R

s s s

t t t

Z s Z t

s Z

Z t s

φ
φ

′ ′+ =
′∆ = −

′∆ = −

′ = ∆ + − ∆ ←
′= ∆

= − ∆ ∆

Also, we have the relation,

0 0

0 0

() / / 2

 ((/ 2)) (2)

s

s

d d f d Z

d d f Z d

′′� ∆ + =

′ ′∴ = − ∆ ←

Also, we have,

0

0

0 0

/ /

 (/)

 ((/ 2) (/)) (3)

s s

s s

s

d f d Z

d Z f d

d d Z f d

′� =

′∴ =
′∴ = − ∆ ←

����������

A10

Now, for the Right end-point, we have,
1

1

1
2

tan ((/ 2) /) (4)

(()) (5)

((tan (/))) (6)

s

s

d d f

d f

θ
θ π φ θ

θ π φ

−

−

′′ ′= + ∆ ←
= − + ←

′′= − + ←

By Sin Rule, we have,
1

2

1
1 0

/ s in / s in (tan (/)) (7)

/ s in / 2 s in (tan ((/ 2) /)) (8)

s s

s

Z d d f

Z d d d f

θ

θ

−

−

′′′ = ←

′′′ ′= + ∆ ←

From Equations (7) and (8), we have,

1 1
1 2 0

1 1

1 1
0

sin / sin (2 /) sin(tan ((/ 2) /)) / sin(tan (/))

 sin(tan ((/ 2) /)) / sin(tan (/))

2 / (cot(tan ((/ 2) /)) cot) /(cot(tan (/

s s s

s s

s s s

d d d d f d f

d d f d f

d d d d f d f

θ θ

φ φ

φ

− −

− −

− −

′′ ′′′� = × + ∆

′′ ′′′= + + ∆ +

′′ ′′′∴ = + ∆ +

0 0

)) cot)

 ((/(/ 2)) cot) /((/) cot)

(2) / / 2((cot)(/ 2))

s s

s s s

f d d f d

d d d f d f d d d

φ

φ φ

φ

+

′′ ′′′= + ∆ + +

′′ ′′′ ′∴ − = − ∆ + + ∆

2
0 0

2 2
0 0

After putting the value of from Eqn (3) , we have :

(cot)(/ 2) / 4

cot ((cot / 2)) (/ 2 (/ 4)) 0

s

s s

s s

d

f d d d d f Z

d d f d f d d f Z

φ

φ φ

′′ ′′ ′+ + ∆ =

′′ ′′ ′ ′∴ + + ∆ + ∆ − =

2
0 0

0 0

2
0

 (/ 2 (/ 4))

 (/ 2)((/ 2))

 (/ 2)s

Put M f d d f Z

f d d f Z

d f Z

′= ∆ −
′= ∆ −

= −

����������

A11

2

2

cot ((cot / 2)) 0

 (((cot / 2)) ((cot / 2)) 4 cot) / 2cot (9)

s s

s

d d f d M

d f d f d M

φ φ

φ φ φ φ

′′ ′′ ′∴ + + ∆ + =

′′ ′ ′∴ = − + ∆ ± + ∆ − ←

After solving for the right end-point of the Sampling Arc, as we had done for the left
end-point, we have,

4 2 2 2
1 1

3
1 2 0 2 1 0

2 2 2 2 2
1 0 3 1 0 1 3 2

2 2 2 2
0 0 0 0 1 0 2

2 2 2 2
0 0 0 2 3 2 0 2 0 0

 [(2)]

 [(2 2 2 2 2)]

 [(2 2 4 2

 2 2 2 2)]

 [(2 2 2 4 2 2

t M K P KP

t P P MN MKs KP MP s

t KPt KP KPs P P P N

K t KNs M t s NP s MP

t MNt KMs t P P KP s KP t s

′� + + −
′+ − − − −
′+ − + + + +

− + − + −
′+ + + + + + 2 0 3

2 2 2 2 4 2 2 2
0 3 0 0 0 0 3 3 0 3 0

0 0 0

0 0 0 0 0 0 0 0 0

2 2 2
0 0 0 0 0 0 0 0 0

2)]

 [(2 2 4 2)] 0

,

(2)(2)

(4 8 4 4 2 ())

(4 2 4 4 8

s s

s s

s s s

NP s MP

s NP N t KNs t K t P KP s KP t

Where

K d s s f fd Z d

M fd t fs t fd Z fs Z Z d Z t

N fd t fd Z fd Z t fs Z t s ft Z

−

+ − − + + + + =

′= + + + ∆
′= + + + + ∆ +

= + + + + + 2 2
0 0 0 0

1 0 0 0

3 3 2
2 0 0 0 0

2 2 2 2
3 0 0 0 0 0

(()))

(4 ())

(2 8 8)

(())(2)

d t Z t

P ft Z t

P fZ ft ft Z

P t Z t ft fZ

′∆ + +
= +

= − −

= + + −

A.6 Example

 :
4 25
1 4 ((/ 3))

Inputs

R

f f is taken as about R

= ⋅
= ⋅

����������

A12

1 1

2 2

(,) (1 , 1)

(,) (3 , 1)

s t

s t

=
=

 :
L e f t-e n d p o in t o f S a m p lin g A rc : (3 4 9 , 2 4 3)
R ig h t-e n d p o in t o f S a m p lin g A rc : (4 1 7 , 0 8 2)

O u tp u t

− ⋅ − ⋅
⋅ ⋅

And the remaining two points on the Sampling Circle, which are on the other
side of the Line Segment:
(3 58 , 2 29) and (4 10 , 1 14)⋅ ⋅ − ⋅ ⋅

(4.17, 0.82)

(-3.49, -2.43)

Figure A.3: Example

���������	

B1

APPENDIX B

Published Work

The following paper was published with Computer Graphics International 2004, based on
this thesis work [Namboori, Teh and Huang, 2004].

An Adaptive Sampling Method for Layered Depth Image

Ravinder Namboori, Hung Chuan Teh, Zhiyong Huang
Department of Computer Science, School of Computing,

National University of Singapore
Singapore 117543

{namboori, tehhc, huangzy}@comp.nus.edu.sg

CGI, Jun’04, pp. 206-213
http://doi.ieeecomputersociety.org/10.1109/CGI.2004.12

Sampling issue is an important problem in image based rendering. In this paper, we

propose an adaptive sampling method to improve the Layered Depth Image framework.

Different from the existing methods of interpolating or splatting neighboring pixels, our

method selects a set of sampling views based on the scene analysis that can guarantee the

final rendering quality. Furthermore, the rendering speed is accelerated by the pre-

computed patch lookup table, which simplifies the reference view selection process to a

simple lookup of a hash table. We have implemented our method. The experiment study

shows the advantage of the method.

Keywords: image based rendering, layer depth images, data sampling, image warping.

