78 research outputs found

    Electroencephalography (EEG) and Unconsciousness

    Get PDF

    Cardiac arrest and therapeutic hypothermia: Prognosis and outcome

    Get PDF
    Abstract Therapeutic hypothermia (TH) is the only treatment available to reduce neurological sequels for unconscious patients following cardiac arrest (CA). TH requires sedation and muscular relaxation, obscuring the clinical neurological examination for estimation of prognosis, and clinical decision making. Continuous amplitude-integrated EEG (aEEG) has been used to predict outcome in neonates suffering from asphyxia. In adults following CA and TH, the novel observation was made that a continuous aEEG-pattern prior to or at normothermia strongly correlated to return of consciousness, while other patterns strongly correlated to continued coma. A status epilepticus aEEG-pattern carried a poor, but not desolate prognosis. Biochemical neuronal-markers (neuron-specific enolase (NSE) and S-100B) have previously been assessed in non-TH CA patients. In TH, an NSE level of 28 ฮผg/l 48h after CA, or an increase of more than 2 ฮผg/l between 24 and 48h were strongly associated to a poor outcome. Five days after the CA, one third of the patients remained in coma. They either had multimodal signs of extensive brain damage (high NSE levels, ischemic changes on MRI or neurophysiological evidence of advanced brain damage (bilateral lack of SSEP)), or showed sustained unconsciousness and a status epilepticus aEEG-pattern. Unconscious patients without these signs of brain injury eventually regained consciousness. Approximately 50% of hypothermia treated patients regained consciousness. Ninety-eight percent of surviving patients had an independent lifestyle six months after the CA. The dominant cognitive problem was a disturbed memory function. Taken together, aEEG appears superior in early neurological prognostication in these patients

    ๋น„์นจ์Šต์  ๋‡ŒํŒŒ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•œ ์‘๊ธ‰ํ™˜์ž์˜ ์ƒ์ฒด๋ฐ˜์‘ ๋ชจ๋‹ˆํ„ฐ๋ง ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2021. 2. ๊น€ํฌ์ฐฌ.๋‡ŒํŒŒ๋Š” ๋Œ€๋‡Œํ”ผ์งˆ์ด๋‚˜ ๋‘ํ”ผ์˜ ์ „๊ทน์„ ํ†ตํ•ด์„œ ๋‡Œ์˜ ์ „๊ธฐ์  ์‹ ํ˜ธ๋ฅผ ๊ธฐ๋กํ•œ ๊ฒƒ์„ ์˜๋ฏธํ•œ๋‹ค. ๋‡Œ ๊ธฐ๋Šฅ ๊ด€์ฐฐ์„ ์œ„ํ•œ ์ง„๋‹จ๋„๊ตฌ๋กœ์จ ๋‡ŒํŒŒ๋Š” ๋‡Œ์ „์ฆ์ด๋‚˜ ์น˜๋งค ์ง„๋‹จ ๋“ฑ์˜ ๋ชฉ์ ์œผ๋กœ ํ™œ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋น„์นจ์Šต์  ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์‘๊ธ‰ํ™˜์ž์˜ ์ฃผ์š” ์ƒ๋ฆฌํ•™์  ์ง€ํ‘œ๋ฅผ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ฒ˜์Œ ๋‘ ์—ฐ๊ตฌ์—์„œ ์‹ฌํ์†Œ์ƒ์ˆ ์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ์‹ฌ์ •์ง€ ๋ผ์ง€์‹คํ—˜๋ชจ๋ธ์„ ๊ณ ์•ˆํ•˜์˜€๋‹ค. ํ˜„์žฌ์˜ ์‹ฌํ์†Œ์ƒ์ˆ  ์ง€์นจ์€ ์ฒด์ˆœํ™˜ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ๊ธฐ๋„์‚ฝ๊ด€์„ ํ†ตํ•œ ํ˜ธ๊ธฐ๋ง ์ด์‚ฐํ™”ํƒ„์†Œ ๋ถ„์••์˜ ์ธก์ •์„ ๊ถŒ๊ณ ํ•œ๋‹ค. ํ•˜์ง€๋งŒ, ์ •ํ™•ํ•œ ๊ธฐ๋„์‚ฝ๊ด€์ด ํŠนํžˆ ๋ณ‘์› ๋ฐ– ์ƒํ™ฉ์—์„œ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ๊ฐ„ํŽธํžˆ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๊ณ  ์†Œ์ƒ ํ™˜์ž์˜ ์‹ ๊ฒฝํ•™์  ์˜ˆํ›„๋ฅผ ์ง„๋‹จํ•˜๋Š”๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•œ ์˜ˆ์ธก ๊ธฐ์ˆ ์ด ์‹ฌํ์†Œ์ƒ์ˆ  ํ’ˆ์งˆํ‰๊ฐ€์ง€ํ‘œ์˜ ๋Œ€์•ˆ์œผ๋กœ ์ œ์•ˆ๋˜์—ˆ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์‹คํ—˜์—์„œ๋Š” ๊ณ ํ’ˆ์งˆ๊ณผ ์ €ํ’ˆ์งˆ ๊ธฐ๋ณธ์‹ฌํ์†Œ์ƒ์ˆ ์„ 10ํšŒ ๋ฐ˜๋ณตํ•˜๋ฉด์„œ ์ธก์ •๋œ ๋‡ŒํŒŒ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‹ฌํ์†Œ์ƒ์ˆ ์˜ ํ’ˆ์งˆ์— ๋”ฐ๋ฅธ ๋‡ŒํŒŒ์˜ ๋ณ€ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฒด์ˆœํ™˜ ํ‰๊ฐ€๋ฅผ ์œ„ํ•œ EEG-based Brain Resuscitation Index (EBRI) ๋ชจ๋ธ์„ ๋„์ถœํ•˜์˜€๋‹ค. EBRI ๋ชจ๋ธ์—์„œ ํš๋“ํ•œ ํ˜ธ๊ธฐ๋ง ์ด์‚ฐํ™”ํƒ„์†Œ ๋ถ„์•• ์˜ˆ์ธก์น˜๋Š” ์‹ค์ œ ๊ฐ’๊ณผ ์–‘์˜ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๋ณด์ด๋ฉฐ, ๋ณ‘์› ๋ฐ– ์ƒํ™ฉ์—์„œ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์˜€๋‹ค. ๋‘ ๋ฒˆ์งธ ์‹คํ—˜์—์„œ๋Š” ๋‘ ๊ฐ€์ง€ ์‹ฌํ์†Œ์ƒ์ˆ (๊ธฐ๋ณธ์‹ฌํ์†Œ์ƒ์ˆ , ์ „๋ฌธ์‹ฌํ์†Œ์ƒ์ˆ )์ด ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ์ œ์„ธ๋™ ์ง์ „์— ์ˆ˜์ง‘๋œ ๋‡ŒํŒŒ๋Š” ์‹ฌํ์†Œ์ƒ์ˆ  ๋„์ค‘ ๊ฒฝ๋™๋งฅํ˜ˆ๋ฅ˜์˜ ํšŒ๋ณต๋ฅ ๊ณผ ํ•จ๊ป˜ ๋ถ„์„๋˜์—ˆ๋‹ค. ์‹ฌํ์†Œ์ƒ์ˆ  ๋„์ค‘ ๊ฒฝ๋™๋งฅํ˜ˆ๋ฅ˜์˜ ํšŒ๋ณต๋ฅ ์„ ๋ฐ˜์˜ํ•˜๋Š” ๋‡ŒํŒŒ ๋ณ€์ˆ˜๋ฅผ ๊ทœ๋ช…ํ•œ ํ›„, ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋†’์€ ํšŒ๋ณต๋ฅ (30% ์ด์ƒ)๊ณผ ๋‚ฎ์€ ํšŒ๋ณต๋ฅ (30% ๋ฏธ๋งŒ)์„ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ด์ง„๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๋„์ถœํ•˜์˜€๋‹ค. ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹  ๊ธฐ๋ฐ˜์˜ ์˜ˆ์ธก๋ชจ๋ธ์ด 0.853์˜ ์ •ํ™•๋„์™€ 0.909์˜ ๊ณก์„ ํ•˜๋ฉด์ ์„ ๋ณด์ด๋ฉฐ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ์ธก๋ชจ๋ธ์€ ์‹ฌ์ •์ง€ ํ™˜์ž์˜ ๋‡Œ ์†Œ์ƒ์„ ํ–ฅ์ƒ์‹œ์ผœ ๋น ๋ฅธ ๋‡Œ ๊ธฐ๋Šฅ ํšŒ๋ณต์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ์„ธ ๋ฒˆ์งธ ์—ฐ๊ตฌ์—์„œ ๋น„์นจ์Šต์  ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ๋‘๊ฐœ๋‚ด์••์„ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•œ ์™ธ์ƒ์„ฑ ๋‡Œ์†์ƒ ๋ผ์ง€์‹คํ—˜๋ชจ๋ธ์ด ๊ณ ์•ˆ๋˜์—ˆ๋‹ค. ์™ธ์ƒ์„ฑ ๋‡Œ์†์ƒ์€ ๋ฌผ๋ฆฌ์  ์ถฉ๊ฒฉ์— ์˜ํ•ด ์ •์ƒ์ ์ธ ๋‡Œ ๊ธฐ๋Šฅ์ด ์ค‘๋‹จ๋œ ์ƒํƒœ๋ฅผ ์˜๋ฏธํ•˜๋ฉฐ, ์ด ๋•Œ์˜ ๋‘๊ฐœ๋‚ด์•• ์ƒ์Šน๊ณผ ๊ด€๋ฅ˜์ €ํ•˜๊ฐ€ ๋‡ŒํŒŒ์— ์˜ํ–ฅ์„ ๋ผ์น  ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ, ์šฐ๋ฆฌ๋Š” ๋‡ŒํŒŒ ๊ธฐ๋ฐ˜ ๋‘๊ฐœ๋‚ด์•• ์˜ˆ์ธก๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ํด๋ฆฌ์นดํ…Œํ„ฐ๋กœ ์‹คํ—˜๋™๋ฌผ์˜ ๋‘๊ฐœ๋‚ด์••์„ ๋ณ€๊ฒฝํ•˜๋ฉด์„œ ๋‡ŒํŒŒ๋ฅผ ํš๋“ํ•˜์˜€๋‹ค. ๋‘๊ฐœ๋‚ด์••์˜ ์ •์ƒ๊ตฌ๊ฐ„(25 mmHg ๋ฏธ๋งŒ)๊ณผ ์œ„ํ—˜๊ตฌ๊ฐ„(25 mmHg ์ด์ƒ)์„ ์œ ์˜๋ฏธํ•˜๊ฒŒ ๊ตฌ๋ถ„ํ•˜๋Š” ๋‡ŒํŒŒ ๋ณ€์ˆ˜๋ฅผ ๊ทœ๋ช…ํ•œ ํ›„ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ๋ฐ˜ ์ด์ง„๋ถ„๋ฅ˜๋ชจ๋ธ์„ ๋„์ถœํ•˜์˜€๋‹ค. ๋‹ค์ธต ํผ์…‰ํŠธ๋ก  ๊ธฐ๋ฐ˜์˜ ์˜ˆ์ธก๋ชจ๋ธ์ด 0.686์˜ ์ •ํ™•๋„์™€ 0.754์˜ ๊ณก์„ ํ•˜๋ฉด์ ์„ ๋ณด์ด๋ฉฐ ๊ฐ€์žฅ ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด์˜€๋‹ค. ๋˜๋‹ค๋ฅธ ๋น„์นจ์Šต ๋ฐ์ดํ„ฐ์ธ ์‹ฌ๋ฐ•์ˆ˜ ์ •๋ณด์™€ ํ•จ๊ป˜ ์‚ฌ์šฉํ•˜์˜€์„ ๋•Œ ์ •ํ™•๋„์™€ ๊ณก์„ ํ•˜๋ฉด์ ์€ ๊ฐ๊ฐ 0.760๊ณผ 0.834๋กœ ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ์ œ์•ˆ๋œ ์˜ˆ์ธก๋ชจ๋ธ์€ ์‘๊ธ‰์ƒํ™ฉ์—์„œ ๋น„์นจ์Šต์ ์œผ๋กœ ๋‘๊ฐœ๋‚ด์••์„ ๊ด€์ฐฐํ•˜์—ฌ ์ •์ƒ ์ˆ˜์ค€์˜ ๋‘๊ฐœ๋‚ด์••์„ ์œ ์ง€ํ•˜๋Š”๋ฐ ๋„์›€์„ ์ค„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ์‘๊ธ‰ํ™˜์ž์˜ ์ฃผ์š” ์ƒ๋ฆฌํ•™์  ์ง€ํ‘œ๋ฅผ ๋น„์นจ์Šต์  ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ด€์ฐฐํ•˜๋Š” ์˜ˆ์ธก๋ชจ๋ธ์„ ์ œ์•ˆํ•˜๊ณ  ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•˜์—ฌ ์ฆ‰๊ฐ์ ์ธ ํ˜ธ๊ธฐ๋ง ์ด์‚ฐํ™”ํƒ„์†Œ ๋ถ„์••, ๊ฒฝ๋™๋งฅํ˜ˆ๋ฅ˜, ๋‘๊ฐœ๋‚ด์••์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ์˜ˆ์ธก๋ชจ๋ธ์„ ์ˆ˜๋ฆฝํ•˜์˜€๋‹ค. ํ•˜์ง€๋งŒ, ๋‡ŒํŒŒ ๋ฐ์ดํ„ฐ๋Š” ์žฅ๊ธฐ๊ฐ„์˜ ์‹ ๊ฒฝํ•™์ , ๊ธฐ๋Šฅ์  ํšŒ๋ณต๊ณผ ํ•จ๊ป˜ ํ‰๊ฐ€๋˜์–ด์•ผ ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ ๊ฐœ๋ฐœํ•œ ์˜ˆ์ธก๋ชจ๋ธ์˜ ์„ฑ๋Šฅ๊ณผ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์€ ํ–ฅํ›„ ๋‹ค์–‘ํ•œ ์ž„์ƒ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด cerebral performance category์™€ modified Rankin scale ๋“ฑ์˜ ์‹ ๊ฒฝํ•™์  ํ‰๊ฐ€์ง€ํ‘œ์™€ ํ•จ๊ป˜ ๋ถ„์„, ๊ฐœ์„ ๋˜์–ด์•ผ ํ•  ๊ฒƒ์ด๋‹ค.Electroencephalogram (EEG) is a recording of the electrical activity of the brain, measured using electrodes attached to the cerebrum cortex or the scalp. As a diagnostic tool for brain disorders, EEG has been widely used for clinical purposes such as epilepsy- and dementia diagnosis. This study develops an EEG-based noninvasive critical care monitoring method for emergency patients. In the first two studies, ventricular fibrillation swine models were designed to develop EEG-based monitoring methods for evaluating the effectiveness of cardiopulmonary resuscitation (CPR). The CPR guidelines recommend measuring end-tidal carbon dioxide (ETCO2) via endotracheal intubation to assess systemic circulation. However, accurate insertion of the endotracheal tube might be difficult in an out-of-hospital setting (OOHS). Therefore, an easily measurable EEG, which has been used to predict resuscitated patients neurologic prognosis, was suggested as a surrogate indicator for CPR feedback. In the first experimental setup, the high- and low quality CPRs were altered 10 times repeatedly, and the EEG parameters were analyzed. Linear regression of an EEG-based brain resuscitation index (EBRI) was used to estimate ETCO2 levels as a novel feedback indicator of systemic circulation during CPR. A positive correlation was found between the EBRI and the real ETCO2, which indicates the feasibility of EBRI in OOHSs. In the second experimental setup, two types of CPR mode were performed: basic life support and advanced cardiovascular life support. EEG signals that were measured between chest compressions and defibrillation shocks were analyzed to monitor the cerebral circulation with respect to the recovery of carotid blood flow (CaBF) during CPR. Significant EEG parameters were identified to represent the CaBF recovery, and machine learning (ML)-based classification models were established to differentiate between the higher (โ‰ฅ 30%) and lower (< 30%) CaBF recovery. The prediction model based on the support vector machine (SVM) showed the best performance, with an accuracy of 0.853 and an area under the curve (AUC) of 0.909. The proposed models are expected to guide better cerebral resuscitation and enable early recovery of brain function. In the third study, a swine model of traumatic brain injury (TBI) was designed to develop an EEG-based prediction model of an elevated intracranial pressure (ICP). TBI is defined as the disruption of normal brain function due to physical impact. This can increase ICP, and the resulting hypoperfusion can affect the cerebral electrical activity. Thus, we developed EEG-based prediction models to monitor ICP levels. During the experiments, EEG was measured while the ICP was adjusted with the Foley balloon catheter. Significant EEG parameters were determined to differentiate between the normal (< 25 mmHg) and dangerous (โ‰ฅ 25 mmHg) ICP levels and ML-based binary classifiers were established to distinguish between these two groups. The multilayer perceptron model showed the best performance with an accuracy of 0.686 and an AUC of 0.754, which were improved to 0.760 and 0.834, respectively, when a noninvasive heart rate was also used as an input. The proposed prediction models are expected to instantly treat an elevated ICP (โ‰ฅ 25 mmHg) in emergency settings. This study presents a new EEG-based noninvasive monitoring method of the physiologic parameters of emergency patients, especially in an OOHS, and evaluates the performance of the proposed models. In this study, EEG was analyzed to predict immediate ETCO2, CaBF, and ICP. The prediction models demonstrate that a noninvasive EEG can yield clinically important predictive outcomes. Eventually, the EEG parameters should be investigated with regard to the long-term neurological and functional outcomes. Further clinical trials are warranted to improve and evaluate the feasibility of the proposed method with respect to the neurological evaluation scores, such as the cerebral performance category and modified Rankin scale.Abstract i Contents iv List of Tables viii List of Figures x List of Abbreviations xii Chapter 1 General Introduction 1 1.1 Electroencephalogram 1 1.2 Clinical use of spontaneous EEG 5 1.3 EEG and cerebral hemodynamics 7 1.4 EEG use in emergency settings 9 1.5 Noninvasive CPR assessment 10 1.6 Noninvasive traumatic brain injury assessment 16 1.7 Thesis objectives 21 Chapter 2 EEG-based Brain Resuscitation Index for Monitoring Systemic Circulation During CPR 23 2.1 Introduction 23 2.2 Methods 25 2.2.1 Ethical statement 25 2.2.2 Study design and setting 25 2.2.3 Experimental animals and housing 27 2.2.4 Surgical preparation and hemodynamic measurements 27 2.2.5 EEG measurement 29 2.2.6 Data analysis 32 2.2.7 EBRI calculation 33 2.2.8 Delta-EBRI calculation 34 2.3 Results 36 2.3.1 Hemodynamic parameters 36 2.3.2 Changes in EEG parameters 37 2.3.3 EBRI calculation 39 2.3.4 Delta-EBRI calculation 41 2.4 Discussion 42 2.4.1 Accomplishment 42 2.4.2 Limitations 45 2.5 Conclusion 46 Chapter 3 EEG-based Prediction Model of the Recovery of Carotid Blood Flow for Monitoring Cerebral Circulation During CPR 47 3.1 Introduction 47 3.2 Methods 50 3.2.1 Ethical statement 50 3.2.2 Study design and setting 50 3.2.3 Experimental animals and housing 52 3.2.4 Surgical preparation and hemodynamic measurements 54 3.2.5 EEG measurement 55 3.2.6 Data processing 57 3.2.7 Data analysis 58 3.2.8 Development of machine-learning based prediction model 59 3.3 Results 63 3.3.1 Results of CPR process 63 3.3.2 EEG changes with the recovery of CaBF 66 3.3.3 Changes in EEG parameters depending on four CaBF groups 68 3.3.4 Changes in EEG parameters depending on two CaBF groups 69 3.3.5 EEG parameters for prediction models 70 3.3.6 Performances of prediction models 73 3.4 Discussion 76 3.4.1 Accomplishment 76 3.4.2 Limitations 78 3.5 Conclusion 80 Chapter 4 EEG-based Prediction Model of an Increased Intra-Cranial Pressure for TBI patients 81 4.1 Introduction 81 4.2 Methods 83 4.2.1 Ethical statement 83 4.2.2 Study design and setting 83 4.2.3 Experimental animals and housing 85 4.2.4 Surgical preparation and hemodynamic measurements 86 4.2.5 EEG measurement 88 4.2.6 Data processing 90 4.2.7 Data analysis 90 4.2.8 Development of machine-learning based prediction model 91 4.3 Results 92 4.3.1 Hemodynamic changes during brain injury phase 92 4.3.2 EEG changes with an increase of ICP 93 4.3.3 EEG parameters for prediction models 94 4.3.4 Performances for prediction models 95 4.4 Discussion 100 4.4.1 Accomplishment 100 4.4.2 Limitations 104 4.5 Conclusion 104 Chapter 5 Summary and Future works 105 5.1 Thesis summary and contributions 105 5.2 Future direction 108 Bibilography 113 Abstract in Korean 135Docto

    Advances in Clinical Neurophysiology

    Get PDF
    Including some of the newest advances in the field of neurophysiology, this book can be considered as one of the treasures that interested scientists would like to collect. It discusses many disciplines of clinical neurophysiology that are, currently, crucial in the practice as they explain methods and findings of techniques that help to improve diagnosis and to ensure better treatment. While trying to rely on evidence-based facts, this book presents some new ideas to be applied and tested in the clinical practice. Advances in Clinical Neurophysiology is important not only for the neurophysiologists but also for clinicians interested or working in wide range of specialties such as neurology, neurosurgery, intensive care units, pediatrics and so on. Generally, this book is written and designed to all those involved in, interpreting or requesting neurophysiologic tests

    Development of a Unique Whole-Brain Model for Upper Extremity Neuroprosthetic Control

    Get PDF
    Neuroprostheses are at the forefront of upper extremity function restoration. However, contemporary controllers of these neuroprostheses do not adequately address the natural brain strategies related to planning, execution and mediation of upper extremity movements. These lead to restrictions in providing complete and lasting restoration of function. This dissertation develops a novel whole-brain model of neuronal activation with the goal of providing a robust platform for an improved upper extremity neuroprosthetic controller. Experiments (N=36 total) used goal-oriented upper extremity movements with real-world objects in an MRI scanner while measuring brain activation during functional magnetic resonance imaging (fMRI). The resulting data was used to understand neuromotor strategies using brain anatomical and temporal activation patterns. The study\u27s fMRI paradigm is unique and the use of goal-oriented movements and real-world objects are crucial to providing accurate information about motor task strategy and cortical representation of reaching and grasping. Results are used to develop a novel whole-brain model using a machine learning algorithm. When tested on human subject data, it was determined that the model was able to accurately distinguish functional motor tasks with no prior knowledge. The proof of concept model created in this work should lead to improved prostheses for the treatment of chronic upper extremity physical dysfunction

    Residual Deficits Observed In Athletes Following Concussion: Combined Eeg And Cognitive Study

    Get PDF
    The neurocognitive sequelae of a sport-related concussion and its management are poorly defined. Emerging evidence suggests that the residual deficits can persist one year or more following a brain injury. Detecting and quantifying the residual deficits are vital in making a decision about the treatment plan and may prevent further damage. For example, improper return to play (RTP) decisions in sports such as football have proven to be associated with the further chance of recurring injury, long-term neurophysiological impairments, and worsening of brain functional activity. The reliability of traditional cognitive assessment tools is debatable, and thus attention has turned to assessments based on electroencephalogram (EEG) to evaluate subtle post-concussive alterations. In this study, we calculated neurocognitive deficits in two different datasets. One dataset contains a combination of EEG analysis with three standard post-concussive assessment tools. The data for this dataset were collected for all testing modalities from 21 adolescent athletes (seven concussive and fourteen healthy) in three different trials. Another dataset contains post-concussion eyes closed EEG signal for twenty concussed and twenty age-matched controls. For EEG assessment, along with linear frequency-based features, we introduced a set of time-frequency and nonlinear features for the first time to explore post-concussive deficits. In conjunction with traditional frequency band analysis, we also presented a new individual frequency based approach for EEG assessment. A set of linear, time-frequency and nonlinear EEG markers were found to be significantly different in the concussed group compared to their matched peers in the healthy group. Although EEG analysis exhibited discrepancies, none of the cognitive assessment resulted in significant deficits. Therefore, the evidence from the study highlight that our proposed EEG analysis and markers are more efficient at deciphering post-concussion residual neurocognitive deficits and thus has a potential clinical utility of proper concussion assessment and management. Moreover, a number of studies have clearly demonstrated the feasibility of supervised and unsupervised pattern recognition algorithms to classify patients with various health-related issues. Inspired by these studies, we hypothesized that a set of robust features would accurately differentiate concussed athletes from control athletes. To verify it, features such as power spectral, statistical, wavelet, and other nonlinear features were extracted from the EEG signal and were used as an input to various classification algorithms to classify the concussed individuals. Various techniques were applied to classify control and concussed athletes and the performance of the classifiers was compared to ensure the best accuracy. Finally, an automated approach based on meaningful feature detection and efficient classification algorithm were presented to systematically identify concussed athletes from healthy controls with a reasonable accuracy. Thus, the study provides sufficient evidence that the proposed analysis is useful in evaluating the post-concussion deficits and may be incorporated into clinical assessments for a standard evaluation of athletes after a concussion

    Direction-Dependent Responses To Traumatic Brain Injury In Pediatric Pigs

    Get PDF
    Traumatic brain injury (TBI) in children is a costly and alarmingly prevalent public health concern. Children (4-11 years of age) in the US have the highest rate of TBI-related emergency department visits. The plane of head rotation significantly affects neurocognitive deficits and pathophysiological responses such as axonal injury, but is largely ignored in TBI literature. In Chapter 1, an outline of existing research is provided, including the lack of attention to diagnosis, treatment, and prevention in children, who exhibit distinct biomechanical and neuropathological responses to TBI. Additionally, we hypothesize that the plane of head rotation in TBI induces a) region-specific changes in axonal injury, which lead to acute and chronic changes in electrophysiological responses; b) changes to event-related potentials and resting state electroencephalography (EEG) and c) tract-oriented strain and strain rate alterations in the white matter. All work in this dissertation is based on a well-established piglet model of TBI. In Chapter 2, we assess a novel rotational head kinematic metric, rotational work (RotWork), which incorporates head rotation rate, direction, and brain shape, as a predictor of acute axonal injury. This metric provides an improvement over existing metrics and could be useful in the development of effective child safety equipment used in recreation or transportation. In Chapter 3, we generate functional networks from auditory event-related potentials and use the patterns of change to distinguish injured brains from non-injured; the resulting algorithm showed an 82% predictive accuracy. In Chapter 4, we find elevations in network nodal strength, modularity and clustering coefficient after TBI across all frequency bands relative to baseline, whereas both metrics were reduced in shams. We report the first study using resting state EEG to create functional networks in relation to pediatric TBI, noting that this work may assist in the development of TBI biomarkers. In Chapter 5, we use a high-resolution finite element model to examine the effects of head rotation plane on the distribution of regional strains and strain rates. Sagittal rapid head rotations induced significantly larger volume fraction of damaged brainstem than axial and coronal rotations. We also found that local tissue deformation and histopathology were head direction- and region- dependent but poorly correlated at a local scale. Finally, in Chapter 6, we conclude that the work presented in this dissertation is novel and contributes valuable knowledge to the study of pediatric TBI, and that consideration of the plane of head rotation is critical to the understanding and accurate prediction of pediatric functional and region-dependent responses to TBI

    On The Effects Of Data Normalisation For Domain Adaptation On EEG Data

    Full text link
    In the Machine Learning (ML) literature, a well-known problem is the Dataset Shift problem where, differently from the ML standard hypothesis, the data in the training and test sets can follow different probability distributions, leading ML systems toward poor generalisation performances. This problem is intensely felt in the Brain-Computer Interface (BCI) context, where bio-signals as Electroencephalographic (EEG) are often used. In fact, EEG signals are highly non-stationary both over time and between different subjects. To overcome this problem, several proposed solutions are based on recent transfer learning approaches such as Domain Adaption (DA). In several cases, however, the actual causes of the improvements remain ambiguous. This paper focuses on the impact of data normalisation, or standardisation strategies applied together with DA methods. In particular, using \textit{SEED}, \textit{DEAP}, and \textit{BCI Competition IV 2a} EEG datasets, we experimentally evaluated the impact of different normalization strategies applied with and without several well-known DA methods, comparing the obtained performances. It results that the choice of the normalisation strategy plays a key role on the classifier performances in DA scenarios, and interestingly, in several cases, the use of only an appropriate normalisation schema outperforms the DA technique.Comment: Published in its final version on Engineering Applications of Artificial Intelligence (EAAI) https://doi.org/10.1016/j.engappai.2023.10620

    Applications of EMG in Clinical and Sports Medicine

    Get PDF
    This second of two volumes on EMG (Electromyography) covers a wide range of clinical applications, as a complement to the methods discussed in volume 1. Topics range from gait and vibration analysis, through posture and falls prevention, to biofeedback in the treatment of neurologic swallowing impairment. The volume includes sections on back care, sports and performance medicine, gynecology/urology and orofacial function. Authors describe the procedures for their experimental studies with detailed and clear illustrations and references to the literature. The limitations of SEMG measures and methods for careful analysis are discussed. This broad compilation of articles discussing the use of EMG in both clinical and research applications demonstrates the utility of the method as a tool in a wide variety of disciplines and clinical fields
    • โ€ฆ
    corecore