646 research outputs found

    Graph-based Neural Multi-Document Summarization

    Full text link
    We propose a neural multi-document summarization (MDS) system that incorporates sentence relation graphs. We employ a Graph Convolutional Network (GCN) on the relation graphs, with sentence embeddings obtained from Recurrent Neural Networks as input node features. Through multiple layer-wise propagation, the GCN generates high-level hidden sentence features for salience estimation. We then use a greedy heuristic to extract salient sentences while avoiding redundancy. In our experiments on DUC 2004, we consider three types of sentence relation graphs and demonstrate the advantage of combining sentence relations in graphs with the representation power of deep neural networks. Our model improves upon traditional graph-based extractive approaches and the vanilla GRU sequence model with no graph, and it achieves competitive results against other state-of-the-art multi-document summarization systems.Comment: In CoNLL 201

    Learning to Extract Coherent Summary via Deep Reinforcement Learning

    Full text link
    Coherence plays a critical role in producing a high-quality summary from a document. In recent years, neural extractive summarization is becoming increasingly attractive. However, most of them ignore the coherence of summaries when extracting sentences. As an effort towards extracting coherent summaries, we propose a neural coherence model to capture the cross-sentence semantic and syntactic coherence patterns. The proposed neural coherence model obviates the need for feature engineering and can be trained in an end-to-end fashion using unlabeled data. Empirical results show that the proposed neural coherence model can efficiently capture the cross-sentence coherence patterns. Using the combined output of the neural coherence model and ROUGE package as the reward, we design a reinforcement learning method to train a proposed neural extractive summarizer which is named Reinforced Neural Extractive Summarization (RNES) model. The RNES model learns to optimize coherence and informative importance of the summary simultaneously. Experimental results show that the proposed RNES outperforms existing baselines and achieves state-of-the-art performance in term of ROUGE on CNN/Daily Mail dataset. The qualitative evaluation indicates that summaries produced by RNES are more coherent and readable.Comment: 8 pages, 1 figure, presented at AAAI-201
    • …
    corecore