643 research outputs found

    Fake Account Identification Using Machine Learning Approaches Integrated with Adaptive Particle Swarm Optimization

    Get PDF
     It is customary for humans, bots, and other automated systems to generate new user accounts by utilizing pilfered or otherwise deceitful personal information. They are employed in deceitful activities such as phishing and identity theft, as well as in spreading damaging rumors. An somebody with malevolent intent may generate a substantial number of counterfeit accounts, ranging from hundreds to thousands, with the aim of disseminating their harmful actions to as many authentic users as possible. Users can get a wealth of knowledge from social networking networks. Malicious individuals are readily encouraged to take use of this vast collection of social media information. These cybercriminals fabricate fictitious identities and disseminate meaningless stuff. An essential aspect of using social media networks is the process of discerning counterfeit profiles. This study presents a machine learning approach to detect fraudulent Instagram profiles. This strategy employed the attribute-selection technique, adaptive particle swarm optimization, and feature-elimination recursion. The results indicate that the suggested adaptive particle swarm optimization method surpasses RFE in terms of accuracy, recall, and F measure

    Automobile Insurance Fraud Detection Using Data Mining: A Systematic Literature Review

    Get PDF
    Insurance is a pivotal element in modern society, but insurers face a persistent challenge from fraudulent behaviour performed by policyholders. This behaviour could be detrimental to both insurance companies and their honest customers, but the intricate nature of insurance fraud severely complicates its efficient, automated detection. This study surveys fifty recent publications on automobile insurance fraud detection, published between January 2019 and March 2023, and presents both the most commonly used data sets and methods for resampling and detection, as well as interesting, novel approaches. The study adopts the highly-cited Systematic Literature Review (SLR) methodology for software engineering research proposed by Kitchenham and Charters and collected studies from four online databases. The findings indicate limited public availability of automobile insurance fraud data sets. In terms of detection methods, the prevailing approach involves supervised machine learning methods that utilise structured, intrinsic features of claims or policies and that lack consideration of an example-dependent cost of misclassification. However, alternative techniques are also explored, including the use of graph-based methods, unstructured textual data, and cost-sensitive classifiers. The most common resampling approach was found to be oversampling. This SLR has identified commonly used methods in recent automobile insurance fraud detection research, and interesting directions for future research. It adds value over a related review by also including studies published from 2021 onward, and by detailing the used methodology. Limitations of this SLR include its restriction to a small number of considered publication years and limited validation of choices made during the process

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Graph Mining for Cybersecurity: A Survey

    Full text link
    The explosive growth of cyber attacks nowadays, such as malware, spam, and intrusions, caused severe consequences on society. Securing cyberspace has become an utmost concern for organizations and governments. Traditional Machine Learning (ML) based methods are extensively used in detecting cyber threats, but they hardly model the correlations between real-world cyber entities. In recent years, with the proliferation of graph mining techniques, many researchers investigated these techniques for capturing correlations between cyber entities and achieving high performance. It is imperative to summarize existing graph-based cybersecurity solutions to provide a guide for future studies. Therefore, as a key contribution of this paper, we provide a comprehensive review of graph mining for cybersecurity, including an overview of cybersecurity tasks, the typical graph mining techniques, and the general process of applying them to cybersecurity, as well as various solutions for different cybersecurity tasks. For each task, we probe into relevant methods and highlight the graph types, graph approaches, and task levels in their modeling. Furthermore, we collect open datasets and toolkits for graph-based cybersecurity. Finally, we outlook the potential directions of this field for future research

    Adversarially Reweighted Sequence Anomaly Detection With Limited Log Data

    Get PDF
    In the realm of safeguarding digital systems, the ability to detect anomalies in log sequences is paramount, with applications spanning cybersecurity, network surveillance, and financial transaction monitoring. This thesis presents AdvSVDD, a sophisticated deep learning model designed for sequence anomaly detection. Built upon the foundation of Deep Support Vector Data Description (Deep SVDD), AdvSVDD stands out by incorporating Adversarial Reweighted Learning (ARL) to enhance its performance, particularly when confronted with limited training data. By leveraging the Deep SVDD technique to map normal log sequences into a hypersphere and harnessing the amplification effects of Adversarial Reweighted Learning, AdvSVDD demonstrates remarkable efficacy in anomaly detection. Empirical evaluations on the BlueGene/L (BG/L) and Thunderbird supercomputer datasets showcase AdvSVDD’s superiority over conventional machine learning and deep learning approaches, including the foundational Deep SVDD framework. Performance metrics such as Precision, Recall, F1-Score, ROC AUC, and PR AUC attest to its proficiency. Furthermore, the study emphasizes AdvSVDD’s effectiveness under constrained training data and offers valuable insights into the role of adversarial component has in the enhancement of anomaly detection

    Use of Graph Neural Networks in Aiding Defensive Cyber Operations

    Full text link
    In an increasingly interconnected world, where information is the lifeblood of modern society, regular cyber-attacks sabotage the confidentiality, integrity, and availability of digital systems and information. Additionally, cyber-attacks differ depending on the objective and evolve rapidly to disguise defensive systems. However, a typical cyber-attack demonstrates a series of stages from attack initiation to final resolution, called an attack life cycle. These diverse characteristics and the relentless evolution of cyber attacks have led cyber defense to adopt modern approaches like Machine Learning to bolster defensive measures and break the attack life cycle. Among the adopted ML approaches, Graph Neural Networks have emerged as a promising approach for enhancing the effectiveness of defensive measures due to their ability to process and learn from heterogeneous cyber threat data. In this paper, we look into the application of GNNs in aiding to break each stage of one of the most renowned attack life cycles, the Lockheed Martin Cyber Kill Chain. We address each phase of CKC and discuss how GNNs contribute to preparing and preventing an attack from a defensive standpoint. Furthermore, We also discuss open research areas and further improvement scopes.Comment: 35 pages, 9 figures, 8 table

    Detection and Explanation of Distributed Denial of Service (DDoS) Attack Through Interpretable Machine Learning

    Get PDF
    Distributed denial of service (DDoS) is a network-based attack where the aim of the attacker is to overwhelm the victim server. The attacker floods the server by sending enormous amount of network packets in a distributed manner beyond the servers capacity and thus causing the disruption of its normal service. In this dissertation, we focus to build intelligent detectors that can learn by themselves with less human interactions and detect DDoS attacks accurately. Machine learning (ML) has promising outcomes throughout the technologies including cybersecurity and provides us with intelligence when applied on Intrusion Detection Systems (IDSs). In addition, from the state-of-the-art ML-based IDSs, the Ensemble classifier (combination of classifiers) outperforms single classifier. Therefore, we have implemented both supervised and unsupervised ensemble frameworks to build IDSs for better DDoS detection accuracy with lower false alarms compared to the existing ones. Our experimentation, done with the most popular and benchmark datasets such as NSL-KDD, UNSW-NB15, and CICIDS2017, have achieved at most detection accuracy of 99.1% with the lowest false positive rate of 0.01%. As feature selection is one of the mandatory preprocessing phases in ML classification, we have designed several feature selection techniques for better performances in terms of DDoS detection accuracy, false positive alarms, and training times. Initially, we have implemented an ensemble framework for feature selection (FS) methods which combines almost all well-known FS methods and yields better outcomes compared to any single FS method.The goal of my dissertation is not only to detect DDoS attacks precisely but also to demonstrate explanations for these detections. Interpretable machine learning (IML) technique is used to explain a detected DDoS attack with the help of the effectiveness of the corresponding features. We also have implemented a novel feature selection approach based on IML which helps to find optimum features that are used further to retrain our models. The retrained model gives better performances than general feature selection process. Moreover, we have developed an explainer model using IML that identifies detected DDoS attacks with proper explanations based on effectiveness of the features. The contribution of this dissertation is five-folded with the ultimate goal of detecting the most frequent DDoS attacks in cyber security. In order to detect DDoS attacks, we first used ensemble machine learning classification with both supervised and unsupervised classifiers. For better performance, we then implemented and applied two feature selection approaches, such as ensemble feature selection framework and IML based feature selection approach, both individually and in a combination with supervised ensemble framework. Furthermore, we exclusively added explanations for the detected DDoS attacks with the help of explainer models that are built using LIME and SHAP IML methods. To build trustworthy explainer models, a detailed survey has been conducted on interpretable machine learning methods and on their associated tools. We applied the designed framework in various domains, like smart grid and NLP-based IDS to verify its efficacy and ability of performing as a generic model

    Advances in Cybercrime Prediction: A Survey of Machine, Deep, Transfer, and Adaptive Learning Techniques

    Full text link
    Cybercrime is a growing threat to organizations and individuals worldwide, with criminals using increasingly sophisticated techniques to breach security systems and steal sensitive data. In recent years, machine learning, deep learning, and transfer learning techniques have emerged as promising tools for predicting cybercrime and preventing it before it occurs. This paper aims to provide a comprehensive survey of the latest advancements in cybercrime prediction using above mentioned techniques, highlighting the latest research related to each approach. For this purpose, we reviewed more than 150 research articles and discussed around 50 most recent and relevant research articles. We start the review by discussing some common methods used by cyber criminals and then focus on the latest machine learning techniques and deep learning techniques, such as recurrent and convolutional neural networks, which were effective in detecting anomalous behavior and identifying potential threats. We also discuss transfer learning, which allows models trained on one dataset to be adapted for use on another dataset, and then focus on active and reinforcement Learning as part of early-stage algorithmic research in cybercrime prediction. Finally, we discuss critical innovations, research gaps, and future research opportunities in Cybercrime prediction. Overall, this paper presents a holistic view of cutting-edge developments in cybercrime prediction, shedding light on the strengths and limitations of each method and equipping researchers and practitioners with essential insights, publicly available datasets, and resources necessary to develop efficient cybercrime prediction systems.Comment: 27 Pages, 6 Figures, 4 Table
    corecore