2,132 research outputs found

    λͺ¨μ…˜ ν”„λ¦¬λ¨Έν‹°λΈŒλ₯Ό μ΄μš©ν•œ λ³΅μž‘ν•œ λ‘œλ΄‡ μž„λ¬΄ ν•™μŠ΅ 및 μΌλ°˜ν™” 기법

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ ν•­κ³΅μš°μ£Όκ³΅ν•™κ³Ό, 2020. 8. κΉ€ν˜„μ§„.Learning from demonstrations (LfD) is a promising approach that enables robots to perform a specific movement. As robotic manipulations are substituting a variety of tasks, LfD algorithms are widely used and studied for specifying the robot configurations for the various types of movements. This dissertation presents an approach based on parametric dynamic movement primitives (PDMP) as a motion representation algorithm which is one of relevant LfD techniques. Unlike existing motion representation algorithms, this work not only represents a prescribed motion but also computes the new behavior through a generalization of multiple demonstrations in the actual environment. The generalization process uses Gaussian process regression (GPR) by representing the nonlinear relationship between the PDMP parameters that determine motion and the corresponding environmental variables. The proposed algorithm shows that it serves as a powerful optimal and real-time motion planner among the existing planning algorithms when optimal demonstrations are provided as dataset. In this dissertation, the safety of motion is also considered. Here, safety refers to keeping the system away from certain configurations that are unsafe. The safety criterion of the PDMP internal parameters are computed to check the safety. This safety criterion reflects the new behavior computed through the generalization process, as well as the individual motion safety of the demonstration set. The demonstrations causing unsafe movement are identified and removed. Also, the demolished demonstrations are replaced by proven demonstrations upon this criterion. This work also presents an extension approach reducing the number of required demonstrations for the PDMP framework. This approach is effective where a single mission consists of multiple sub-tasks and requires numerous demonstrations in generalizing them. The whole trajectories in provided demonstrations are segmented into multiple sub-tasks representing unit motions. Then, multiple PDMPs are formed independently for correlated-segments. The phase-decision process determines which sub-task and associated PDMPs to be executed online, allowing multiple PDMPs to be autonomously configured within an integrated framework. GPR formulations are applied to obtain execution time and regional goal configuration for each sub-task. Finally, the proposed approach and its extension are validated with the actual experiments of mobile manipulators. The first two scenarios regarding cooperative aerial transportation demonstrate the excellence of the proposed technique in terms of quick computation, generation of efficient movement, and safety assurance. The last scenario deals with two mobile manipulations using ground vehicles and shows the effectiveness of the proposed extension in executing complex missions.μ‹œμ—° ν•™μŠ΅ 기법(Learning from demonstrations, LfD)은 λ‘œλ΄‡μ΄ νŠΉμ • λ™μž‘μ„ μˆ˜ν–‰ν•  수 μžˆλ„λ‘ ν•˜λŠ” μœ λ§ν•œ λ™μž‘ 생성 기법이닀. λ‘œλ΄‡ μ‘°μž‘κΈ°κ°€ 인간 μ‚¬νšŒμ—μ„œ λ‹€μ–‘ν•œ 업무λ₯Ό λŒ€μ²΄ν•΄ 감에 따라, λ‹€μ–‘ν•œ μž„λ¬΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” λ‘œλ΄‡μ˜ λ™μž‘μ„ μƒμ„±ν•˜κΈ° μœ„ν•΄ LfD μ•Œκ³ λ¦¬μ¦˜λ“€μ€ 널리 μ—°κ΅¬λ˜κ³ , μ‚¬μš©λ˜κ³  μžˆλ‹€. λ³Έ 논문은 LfD 기법 쀑 λͺ¨μ…˜ ν”„λ¦¬λ¨Έν‹°λΈŒ 기반의 λ™μž‘ μž¬μƒμ„± μ•Œκ³ λ¦¬μ¦˜μΈ Parametric dynamic movement primitives(PDMP)에 κΈ°μ΄ˆν•œ μ•Œκ³ λ¦¬μ¦˜μ„ μ œμ‹œν•˜λ©°, 이λ₯Ό 톡해 λ‹€μ–‘ν•œ μž„λ¬΄λ₯Ό μˆ˜ν–‰ν•˜λŠ” λͺ¨λ°”일 μ‘°μž‘κΈ°μ˜ ꢀ적을 μƒμ„±ν•œλ‹€. 기쑴의 λ™μž‘ μž¬μƒμ„± μ•Œκ³ λ¦¬μ¦˜κ³Ό 달리, 이 μ—°κ΅¬λŠ” 제곡된 μ‹œμ—°μ—μ„œ ν‘œν˜„λœ λ™μž‘μ„ λ‹¨μˆœνžˆ μž¬μƒμ„±ν•˜λŠ” 것에 κ·ΈμΉ˜μ§€ μ•Šκ³ , μƒˆλ‘œμš΄ ν™˜κ²½μ— 맞게 μΌλ°˜ν™” ν•˜λŠ” 과정을 ν¬ν•¨ν•œλ‹€. 이 λ…Όλ¬Έμ—μ„œ μ œμ‹œν•˜λŠ” μΌλ°˜ν™” 과정은 PDMPs의 λ‚΄λΆ€ νŒŒλΌλ―Έν„° 값인 μŠ€νƒ€μΌ νŒŒλΌλ―Έν„°μ™€ ν™˜κ²½ λ³€μˆ˜ μ‚¬μ΄μ˜ λΉ„μ„ ν˜• 관계λ₯Ό κ°€μš°μŠ€ νšŒκ·€ 기법 (Gaussian process regression, GPR)을 μ΄μš©ν•˜μ—¬ μˆ˜μ‹μ μœΌλ‘œ ν‘œν˜„ν•œλ‹€. μ œμ•ˆλœ 기법은 λ˜ν•œ 졜적 μ‹œμ—°λ₯Ό ν•™μŠ΅ν•˜λŠ” 방식을 톡해 κ°•λ ₯ν•œ 졜적 μ‹€μ‹œκ°„ 경둜 κ³„νš κΈ°λ²•μœΌλ‘œλ„ μ‘μš©λ  수 μžˆλ‹€. λ³Έ λ…Όλ¬Έμ—μ„œλŠ” λ˜ν•œ λ‘œλ΄‡μ˜ ꡬ동 μ•ˆμ „μ„±λ„ κ³ λ €ν•œλ‹€. κΈ°μ‘΄ μ—°κ΅¬λ“€μ—μ„œ 닀루어진 μ‹œμ—° 관리 기술이 λ‘œλ΄‡μ˜ ꡬ동 νš¨μœ¨μ„±μ„ κ°œμ„ ν•˜λŠ” λ°©ν–₯으둜 μ œμ‹œλœ 것과 달리, 이 μ—°κ΅¬λŠ” κ°•ν•œ κ΅¬μ†μ‘°κ±΄μœΌλ‘œ λ‘œλ΄‡μ˜ ꡬ동 μ•ˆμ „μ„±μ„ ν™•λ³΄ν•˜λŠ” μ‹œμ—° 관리 κΈ°μˆ μ„ 톡해 μ•ˆμ •μ„±μ„ κ³ λ €ν•˜λŠ” μƒˆλ‘œμš΄ 방식을 μ œμ‹œν•œλ‹€. μ œμ•ˆλœ 방식은 μŠ€νƒ€μΌ νŒŒλΌλ―Έν„° κ°’ μƒμ—μ„œ μ•ˆμ „μ„± 기쀀을 κ³„μ‚°ν•˜λ©°, 이 μ•ˆμ „ 기쀀을 톡해 μ‹œμ—°μ„ μ œκ±°ν•˜λŠ” 일련의 μž‘μ—…μ„ μˆ˜ν–‰ν•œλ‹€. λ˜ν•œ, 제거된 μ‹œμœ„λ₯Ό μ•ˆμ „ 기쀀에 따라 μž…μ¦λœ μ‹œμœ„λ‘œ λŒ€μ²΄ν•˜μ—¬ μΌλ°˜ν™” μ„±λŠ₯을 μ €ν•˜μ‹œν‚€μ§€ μ•Šλ„λ‘ μ‹œμœ„λ₯Ό κ΄€λ¦¬ν•œλ‹€. 이λ₯Ό 톡해 λ‹€μˆ˜μ˜ μ‹œμ—° 각각 κ°œλ³„ λ™μž‘ μ•ˆμ „μ„± 뿐 μ•„λ‹ˆλΌ 온라인 λ™μž‘μ˜ μ•ˆμ „μ„±κΉŒμ§€ κ³ λ €ν•  수 있으며, μ‹€μ‹œκ°„ λ‘œλ΄‡ μ‘°μž‘κΈ° μš΄μš©μ‹œ μ•ˆμ „μ„±μ΄ 확보될 수 μžˆλ‹€. μ œμ•ˆλœ μ•ˆμ •μ„±μ„ κ³ λ €ν•œ μ‹œμ—° 관리 κΈ°μˆ μ€ λ˜ν•œ ν™˜κ²½μ˜ 정적 섀정이 λ³€κ²½λ˜μ–΄ λͺ¨λ“  μ‹œμ—°μ„ ꡐ체해야 ν•  수 μžˆλŠ” μƒν™©μ—μ„œ μ‚¬μš©ν•  수 μžˆλŠ” μ‹œμ—°λ“€μ„ νŒλ³„ν•˜κ³ , 효율적으둜 μž¬μ‚¬μš©ν•˜λŠ” 데 μ‘μš©ν•  수 μžˆλ‹€. λ˜ν•œ λ³Έ 논문은 λ³΅μž‘ν•œ μž„λ¬΄μ—μ„œ 적용될 수 μžˆλŠ” PDMPs의 ν™•μž₯ 기법인 seg-PDMPsλ₯Ό μ œμ‹œν•œλ‹€. 이 접근방식은 λ³΅μž‘ν•œ μž„λ¬΄κ°€ 일반적으둜 볡수개의 κ°„λ‹¨ν•œ ν•˜μœ„ μž‘μ—…μœΌλ‘œ κ΅¬μ„±λœλ‹€κ³  κ°€μ •ν•œλ‹€. κΈ°μ‘΄ PDMPs와 달리 seg-PDMPsλŠ” 전체 ꢀ적을 ν•˜μœ„ μž‘μ—…μ„ λ‚˜νƒ€λ‚΄λŠ” μ—¬λŸ¬ 개의 λ‹¨μœ„ λ™μž‘μœΌλ‘œ λΆ„ν• ν•˜κ³ , 각 λ‹¨μœ„λ™μž‘μ— λŒ€ν•΄ μ—¬λŸ¬κ°œμ˜ PDMPsλ₯Ό κ΅¬μ„±ν•œλ‹€. 각 λ‹¨μœ„ λ™μž‘ λ³„λ‘œ μƒμ„±λœ PDMPsλŠ” ν†΅ν•©λœ ν”„λ ˆμž„μ›Œν¬λ‚΄μ—μ„œ 단계 κ²°μ • ν”„λ‘œμ„ΈμŠ€λ₯Ό 톡해 μžλ™μ μœΌλ‘œ ν˜ΈμΆœλœλ‹€. 각 단계 λ³„λ‘œ λ‹¨μœ„ λ™μž‘μ„ μˆ˜ν–‰ν•˜κΈ° μœ„ν•œ μ‹œκ°„ 및 ν•˜μœ„ λͺ©ν‘œμ μ€ κ°€μš°μŠ€ 곡정 νšŒκ·€(GPR)λ₯Ό μ΄μš©ν•œ ν™˜κ²½λ³€μˆ˜μ™€μ˜μ˜ 관계식을 톡해 μ–»λŠ”λ‹€. 결과적으둜, 이 μ—°κ΅¬λŠ” μ „μ²΄μ μœΌλ‘œ μš”κ΅¬λ˜λŠ” μ‹œμ—°μ˜ 수λ₯Ό 효과적으둜 쀄일 뿐 μ•„λ‹ˆλΌ, 각 λ‹¨μœ„λ™μž‘μ˜ ν‘œν˜„ μ„±λŠ₯을 κ°œμ„ ν•œλ‹€. μ œμ•ˆλœ μ•Œκ³ λ¦¬μ¦˜μ€ ν˜‘λ™ λͺ¨λ°”일 λ‘œλ΄‡ μ‘°μž‘κΈ° μ‹€ν—˜μ„ ν†΅ν•˜μ—¬ κ²€μ¦λœλ‹€. μ„Έ κ°€μ§€μ˜ μ‹œλ‚˜λ¦¬μ˜€κ°€ λ³Έ λ…Όλ¬Έμ—μ„œ 닀루어지며, 항곡 μš΄μ†‘κ³Ό κ΄€λ ¨λœ 첫 두 가지 μ‹œλ‚˜λ¦¬μ˜€λŠ” PDMPs 기법이 λ‘œλ΄‡ μ‘°μž‘κΈ°μ—μ„œ λΉ λ₯Έ 적응성, μž„λ¬΄ νš¨μœ¨μ„±κ³Ό μ•ˆμ „μ„± λͺ¨λ‘ λ§Œμ‘±ν•˜λŠ” 것을 μž…μ¦ν•œλ‹€. λ§ˆμ§€λ§‰ μ‹œλ‚˜λ¦¬μ˜€λŠ” 지상 μ°¨λŸ‰μ„ μ΄μš©ν•œ 두 개의 λ‘œλ΄‡ μ‘°μž‘κΈ°μ— λŒ€ν•œ μ‹€ν—˜μœΌλ‘œ λ³΅μž‘ν•œ μž„λ¬΄ μˆ˜ν–‰μ„ ν•˜κΈ° μœ„ν•΄ ν™•μž₯된 기법인 seg-PDMPsκ°€ 효과적으둜 λ³€ν™”ν•˜λŠ” ν™˜κ²½μ—μ„œ μΌλ°˜ν™”λœ λ™μž‘μ„ 생성함을 κ²€μ¦ν•œλ‹€.1 Introduction 1 1.1 Motivations 1 1.2 Literature Survey 3 1.2.1 Conventional Motion Planning in Mobile Manipulations 3 1.2.2 Motion Representation Algorithms 5 1.2.3 Safety-guaranteed Motion Representation Algorithms 7 1.3 Research Objectives and Contributions 7 1.3.1 Motion Generalization in Motion Representation Algorithm 9 1.3.2 Motion Generalization with Safety Guarantee 9 1.3.3 Motion Generalization for Complex Missions 10 1.4 Thesis Organization 11 2 Background 12 2.1 DMPs 12 2.2 Mobile Manipulation Systems 13 2.2.1 Single Mobile Manipulation 14 2.2.2 Cooperative Mobile Manipulations 14 2.3 Experimental Setup 17 2.3.1 Test-beds for Aerial Manipulators 17 2.3.2 Test-beds for Robot Manipulators with Ground Vehicles 17 3 Motion Generalization in Motion Representation Algorithm 22 3.1 Parametric Dynamic Movement Primitives 22 3.2 Generalization Process in PDMPs 26 3.2.1 Environmental Parameters 26 3.2.2 Mapping Function 26 3.3 Simulation Results 29 3.3.1 Two-dimensional Hurdling Motion 29 3.3.2 Cooperative Aerial Transportation 30 4 Motion Generalization with Safety Guarantee 36 4.1 Safety Criterion in Style Parameter 36 4.2 Demonstration Management 39 4.3 Simulation Validation 42 4.3.1 Two-dimensional Hurdling Motion 46 4.3.2 Cooperative Aerial Transportation 47 5 Motion Generalization for Complex Missions 51 5.1 Overall Structure of Seg-PDMPs 51 5.2 Motion Segments 53 5.3 Phase-decision Process 54 5.4 Seg-PDMPs for Single Phase 54 5.5 Simulation Results 55 5.5.1 Initial/terminal Offsets 56 5.5.2 Style Generalization 59 5.5.3 Recombination 61 6 Experimental Validation and Results 63 6.1 Cooperative Aerial Transportation 63 6.2 Cooperative Mobile Hang-dry Mission 70 6.2.1 Demonstrations 70 6.2.2 Simulation Validation 72 6.2.3 Experimental Results 78 7 Conclusions 82 Abstract (in Korean) 93Docto

    Learning to Adapt the Parameters of Behavior Trees and Motion Generators (BTMGs) to Task Variations

    Full text link
    The ability to learn new tasks and quickly adapt to different variations or dimensions is an important attribute in agile robotics. In our previous work, we have explored Behavior Trees and Motion Generators (BTMGs) as a robot arm policy representation to facilitate the learning and execution of assembly tasks. The current implementation of the BTMGs for a specific task may not be robust to the changes in the environment and may not generalize well to different variations of tasks. We propose to extend the BTMG policy representation with a module that predicts BTMG parameters for a new task variation. To achieve this, we propose a model that combines a Gaussian process and a weighted support vector machine classifier. This model predicts the performance measure and the feasibility of the predicted policy with BTMG parameters and task variations as inputs. Using the outputs of the model, we then construct a surrogate reward function that is utilized within an optimizer to maximize the performance of a task over BTMG parameters for a fixed task variation. To demonstrate the effectiveness of our proposed approach, we conducted experimental evaluations on push and obstacle avoidance tasks in simulation and with a real KUKA iiwa robot. Furthermore, we compared the performance of our approach with four baseline methods

    Bayesian Disturbance Injection: Robust Imitation Learning of Flexible Policies

    Full text link
    Scenarios requiring humans to choose from multiple seemingly optimal actions are commonplace, however standard imitation learning often fails to capture this behavior. Instead, an over-reliance on replicating expert actions induces inflexible and unstable policies, leading to poor generalizability in an application. To address the problem, this paper presents the first imitation learning framework that incorporates Bayesian variational inference for learning flexible non-parametric multi-action policies, while simultaneously robustifying the policies against sources of error, by introducing and optimizing disturbances to create a richer demonstration dataset. This combinatorial approach forces the policy to adapt to challenging situations, enabling stable multi-action policies to be learned efficiently. The effectiveness of our proposed method is evaluated through simulations and real-robot experiments for a table-sweep task using the UR3 6-DOF robotic arm. Results show that, through improved flexibility and robustness, the learning performance and control safety are better than comparison methods.Comment: 7 pages, Accepted by the 2021 International Conference on Robotics and Automation (ICRA 2021

    Learning Skill-based Industrial Robot Tasks with User Priors

    Full text link
    Robot skills systems are meant to reduce robot setup time for new manufacturing tasks. Yet, for dexterous, contact-rich tasks, it is often difficult to find the right skill parameters. One strategy is to learn these parameters by allowing the robot system to learn directly on the task. For a learning problem, a robot operator can typically specify the type and range of values of the parameters. Nevertheless, given their prior experience, robot operators should be able to help the learning process further by providing educated guesses about where in the parameter space potential optimal solutions could be found. Interestingly, such prior knowledge is not exploited in current robot learning frameworks. We introduce an approach that combines user priors and Bayesian optimization to allow fast optimization of robot industrial tasks at robot deployment time. We evaluate our method on three tasks that are learned in simulation as well as on two tasks that are learned directly on a real robot system. Additionally, we transfer knowledge from the corresponding simulation tasks by automatically constructing priors from well-performing configurations for learning on the real system. To handle potentially contradicting task objectives, the tasks are modeled as multi-objective problems. Our results show that operator priors, both user-specified and transferred, vastly accelerate the discovery of rich Pareto fronts, and typically produce final performance far superior to proposed baselines.Comment: 8 pages, 6 figures, accepted at 2022 IEEE International Conference on Automation Science and Engineering (CASE

    A structured prediction approach for robot imitation learning

    Get PDF
    We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised learning that enables learning models to operate on output spaces with complex structures. Through the lens of structured prediction, we show how robots can learn to imitate trajectories belonging to not only Euclidean spaces but also Riemannian manifolds. Exploiting ideas from information theory, we propose a class of loss functions based on the f-divergence to measure the information loss between the demonstrated and reproduced probabilistic trajectories. Different types of f-divergence will result in different policies, which we call imitation modes. Furthermore, our approach enables the incorporation of spatial and temporal trajectory modulation, which is necessary for robots to be adaptive to the change in working conditions. We benchmark our algorithm against state-of-the-art methods in terms of trajectory reproduction and adaptation. The quantitative evaluation shows that our approach outperforms other algorithms regarding both accuracy and efficiency. We also report real-world experimental results on learning manifold trajectories in a polishing task with a KUKA LWR robot arm, illustrating the effectiveness of our algorithmic framework

    A Structured Prediction Approach for Robot Imitation Learning

    Full text link
    We propose a structured prediction approach for robot imitation learning from demonstrations. Among various tools for robot imitation learning, supervised learning has been observed to have a prominent role. Structured prediction is a form of supervised learning that enables learning models to operate on output spaces with complex structures. Through the lens of structured prediction, we show how robots can learn to imitate trajectories belonging to not only Euclidean spaces but also Riemannian manifolds. Exploiting ideas from information theory, we propose a class of loss functions based on the f-divergence to measure the information loss between the demonstrated and reproduced probabilistic trajectories. Different types of f-divergence will result in different policies, which we call imitation modes. Furthermore, our approach enables the incorporation of spatial and temporal trajectory modulation, which is necessary for robots to be adaptive to the change in working conditions. We benchmark our algorithm against state-of-the-art methods in terms of trajectory reproduction and adaptation. The quantitative evaluation shows that our approach outperforms other algorithms regarding both accuracy and efficiency. We also report real-world experimental results on learning manifold trajectories in a polishing task with a KUKA LWR robot arm, illustrating the effectiveness of our algorithmic framework
    • …
    corecore