23,541 research outputs found

    Feature and viewpoint selection for industrial car assembly

    Get PDF
    Abstract. Quality assurance programs of today’s car manufacturers show increasing demand for automated visual inspection tasks. A typical example is just-in-time checking of assemblies along production lines. Since high throughput must be achieved, object recognition and pose estimation heavily rely on offline preprocessing stages of available CAD data. In this paper, we propose a complete, universal framework for CAD model feature extraction and entropy index based viewpoint selection that is developed in cooperation with a major german car manufacturer

    Neural Mechanisms for Information Compression by Multiple Alignment, Unification and Search

    Get PDF
    This article describes how an abstract framework for perception and cognition may be realised in terms of neural mechanisms and neural processing. This framework — called information compression by multiple alignment, unification and search (ICMAUS) — has been developed in previous research as a generalized model of any system for processing information, either natural or artificial. It has a range of applications including the analysis and production of natural language, unsupervised inductive learning, recognition of objects and patterns, probabilistic reasoning, and others. The proposals in this article may be seen as an extension and development of Hebb’s (1949) concept of a ‘cell assembly’. The article describes how the concept of ‘pattern’ in the ICMAUS framework may be mapped onto a version of the cell assembly concept and the way in which neural mechanisms may achieve the effect of ‘multiple alignment’ in the ICMAUS framework. By contrast with the Hebbian concept of a cell assembly, it is proposed here that any one neuron can belong in one assembly and only one assembly. A key feature of present proposals, which is not part of the Hebbian concept, is that any cell assembly may contain ‘references’ or ‘codes’ that serve to identify one or more other cell assemblies. This mechanism allows information to be stored in a compressed form, it provides a robust mechanism by which assemblies may be connected to form hierarchies and other kinds of structure, it means that assemblies can express abstract concepts, and it provides solutions to some of the other problems associated with cell assemblies. Drawing on insights derived from the ICMAUS framework, the article also describes how learning may be achieved with neural mechanisms. This concept of learning is significantly different from the Hebbian concept and appears to provide a better account of what we know about human learning

    Prince Charming has Perfect White Teeth: Performativity and Media Education

    Get PDF
    This paper argues that Judith Butler’s post structuralist theory of performativity provides a valuable tool for understanding how students might contest prevailing hegemonic gender discourses in media education classrooms. It suggests an alternative to structuralist "empowerment" and "critical pedagogy" approaches, which continue to motivate many media educators, despite serious questions being asked about their effectiveness. The paper draws on data collected from a unit of work about video games, completed by year ten students at an all boys’ secondary school in Brisbane. It argues that many media related activities fail to elicit genuinely "critical" responses because they are complicit in the regulation of hegemonic discourses. It suggests that teachers are more likely to create the potential for variation in their students’ gender performances if activities are dialogic and open-ended and avoid placing emphasis on discourses of excellence and competition

    Review: Object vision in a structured world

    Get PDF
    In natural vision, objects appear at typical locations, both with respect to visual space (e.g., an airplane in the upper part of a scene) and other objects (e.g., a lamp above a table). Recent studies have shown that object vision is strongly adapted to such positional regularities. In this review we synthesize these developments, highlighting that adaptations to positional regularities facilitate object detection and recognition, and sharpen the representations of objects in visual cortex. These effects are pervasive across various types of high-level content. We posit that adaptations to real-world structure collectively support optimal usage of limited cortical processing resources. Taking positional regularities into account will thus be essential for understanding efficient object vision in the real world

    A constraint-based methodology for product design with virtual reality

    Get PDF
    This paper presents a constraint-based methodology for product design with advanced virtual reality technologies. A hierarchically structured and constraint-based data model is developed to support product design from features to parts and further to assemblies in a VR environment. Product design in the VR environment is performed in an intuitive manner through precise constraint-based manipulations. Constraint-based manipulations are accompanied with automatic constraint recognition and precise constraint satisfaction to establish constraints between objects, and are further realized by allowable motions for precise 3D interactions in the VR environment. The allowable motions are represented as a mathematical matrix and derived from constraints between objects by constraint solving. A procedure-based degrees-of-freedom combination approach is presented for 3D constraint solving. A rule-based constraint recognition engine is developed for both constraint-based manipulations and implicitly incorporating constraints into the VR environment. An intuitive method is presented for recognizing pairs of mating features between assembly components. Examples are presented to demonstrate the efficacy of the proposed methodology

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling
    corecore