16 research outputs found

    Fine-Grained Session Recommendations in E-commerce using Deep Reinforcement Learning

    Full text link
    Sustaining users' interest and keeping them engaged in the platform is very important for the success of an e-commerce business. A session encompasses different activities of a user between logging into the platform and logging out or making a purchase. User activities in a session can be classified into two groups: Known Intent and Unknown intent. Known intent activity pertains to the session where the intent of a user to browse/purchase a specific product can be easily captured. Whereas in unknown intent activity, the intent of the user is not known. For example, consider the scenario where a user enters the session to casually browse the products over the platform, similar to the window shopping experience in the offline setting. While recommending similar products is essential in the former, accurately understanding the intent and recommending interesting products is essential in the latter setting in order to retain a user. In this work, we focus primarily on the unknown intent setting where our objective is to recommend a sequence of products to a user in a session to sustain their interest, keep them engaged and possibly drive them towards purchase. We formulate this problem in the framework of the Markov Decision Process (MDP), a popular mathematical framework for sequential decision making and solve it using Deep Reinforcement Learning (DRL) techniques. However, training the next product recommendation is difficult in the RL paradigm due to large variance in browse/purchase behavior of the users. Therefore, we break the problem down into predicting various product attributes, where a pattern/trend can be identified and exploited to build accurate models. We show that the DRL agent provides better performance compared to a greedy strategy

    Non-invasive Self-attention for Side Information Fusion in Sequential Recommendation

    Full text link
    Sequential recommender systems aim to model users' evolving interests from their historical behaviors, and hence make customized time-relevant recommendations. Compared with traditional models, deep learning approaches such as CNN and RNN have achieved remarkable advancements in recommendation tasks. Recently, the BERT framework also emerges as a promising method, benefited from its self-attention mechanism in processing sequential data. However, one limitation of the original BERT framework is that it only considers one input source of the natural language tokens. It is still an open question to leverage various types of information under the BERT framework. Nonetheless, it is intuitively appealing to utilize other side information, such as item category or tag, for more comprehensive depictions and better recommendations. In our pilot experiments, we found naive approaches, which directly fuse types of side information into the item embeddings, usually bring very little or even negative effects. Therefore, in this paper, we propose the NOninVasive self-attention mechanism (NOVA) to leverage side information effectively under the BERT framework. NOVA makes use of side information to generate better attention distribution, rather than directly altering the item embedding, which may cause information overwhelming. We validate the NOVA-BERT model on both public and commercial datasets, and our method can stably outperform the state-of-the-art models with negligible computational overheads.Comment: Accepted at AAAI 202

    Impatient Bandits: Optimizing Recommendations for the Long-Term Without Delay

    Full text link
    Recommender systems are a ubiquitous feature of online platforms. Increasingly, they are explicitly tasked with increasing users' long-term satisfaction. In this context, we study a content exploration task, which we formalize as a multi-armed bandit problem with delayed rewards. We observe that there is an apparent trade-off in choosing the learning signal: Waiting for the full reward to become available might take several weeks, hurting the rate at which learning happens, whereas measuring short-term proxy rewards reflects the actual long-term goal only imperfectly. We address this challenge in two steps. First, we develop a predictive model of delayed rewards that incorporates all information obtained to date. Full observations as well as partial (short or medium-term) outcomes are combined through a Bayesian filter to obtain a probabilistic belief. Second, we devise a bandit algorithm that takes advantage of this new predictive model. The algorithm quickly learns to identify content aligned with long-term success by carefully balancing exploration and exploitation. We apply our approach to a podcast recommendation problem, where we seek to identify shows that users engage with repeatedly over two months. We empirically validate that our approach results in substantially better performance compared to approaches that either optimize for short-term proxies, or wait for the long-term outcome to be fully realized.Comment: Presented at the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23
    corecore