29,261 research outputs found

    Testing the Mutually Enhanced Magicity Effect in Nuclear Incompressibility via the Giant Monopole Resonance in the 204,206,208^{204,206,208}Pb Isotopes

    Full text link
    Using inelastic α\alpha-scattering at extremely forward angles, including 0∘0^\circ, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the 204,206,208^{204,206,208}Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the "softness" of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.Comment: Accepted for publication in Physics Letters B. Very minor changes in tex

    Dynamical nucleus-nucleus potential and incompressibility of nuclear matter

    Full text link
    The dynamical nucleus-nucleus potentials for some fusion reactions are investigated by using the improved quantum molecular dynamics (ImQMD) model with different sets of parameters in which the corresponding incompressibility coefficient of nuclear matter is different. Two new sets of parameters SKP* and IQ3 for the ImQMD model are proposed with the incompressibility coefficient of 195 and 225 MeV, respectively. The measured fusion excitation function for 16O+208Pb and the charge distribution of fragments for Ca+Ca and Au+Au in multi-fragmentation process can be reasonably well reproduced. Simultaneously, the influence of the nuclear matter incompressibility and the range of nucleon-nucleon interaction on the nucleus-nucleus dynamic potential is investigated.Comment: 7 figures, 3 tables, to appear in Phys. Rev.

    Effect of pairing correlations on incompressibility and symmetry energy in nuclear matter and finite nuclei

    Get PDF
    The role of superfluidity in the incompressibility and in the symmetry energy is studied in nuclear matter and finite nuclei. Several pairing interactions are used: surface, mixed and isovector dependent. Pairing has a small effect on the nuclear matter incompressibility at saturation density, but the effects are significant at lower densities. The pairing effect on the centroid energy of the isoscalar Giant Monopole Resonance (GMR) is also evaluated for Pb and Sn isotopes by using a microscopic constrained-HFB approach, and found to change at most by 10% the nucleus incompressibility KAK_A. It is shown by using the Local Density Approximation (LDA) that most of the pairing effect on the GMR centroid come from the low-density nuclear surface.Comment: 9 pages, 6 figure

    Incompressibility of strange matter

    Get PDF
    Strange stars calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.Comment: Accepted for publication in Phys Lett

    Large Alphabets and Incompressibility

    Full text link
    We briefly survey some concepts related to empirical entropy -- normal numbers, de Bruijn sequences and Markov processes -- and investigate how well it approximates Kolmogorov complexity. Our results suggest â„“\ellth-order empirical entropy stops being a reasonable complexity metric for almost all strings of length mm over alphabets of size nn about when nâ„“n^\ell surpasses mm

    Incompressibility of orthogonal grassmannians

    Get PDF
    We prove the following conjecture due to Bryant Mathews (2008). Let Q be the orthogonal grassmannian of totally isotropic i-planes of a non-degenerate quadratic form q over an arbitrary field (where i is an integer in the interval [1, (\dim q)/2]). If the degree of each closed point on Q is divisible by 2^i and the Witt index of q over the function field of Q is equal to i, then the variety Q is 2-incompressible.Comment: 5 page

    The Compression-Mode Giant Resonances and Nuclear Incompressibility

    Get PDF
    The compression-mode giant resonances, namely the isoscalar giant monopole and isoscalar giant dipole modes, are examples of collective nuclear motion. Their main interest stems from the fact that one hopes to extrapolate from their properties the incompressibility of uniform nuclear matter, which is a key parameter of the nuclear Equation of State (EoS). Our understanding of these issues has undergone two major jumps, one in the late 1970s when the Isoscalar Giant Monopole Resonance (ISGMR) was experimentally identified, and another around the turn of the millennium since when theory has been able to start giving reliable error bars to the incompressibility. However, mainly magic nuclei have been involved in the deduction of the incompressibility from the vibrations of finite nuclei. The present review deals with the developments beyond all this. Experimental techniques have been improved, and new open-shell, and deformed, nuclei have been investigated. The associated changes in our understanding of the problem of the nuclear incompressibility are discussed. New theoretical models, decay measurements, and the search for the evolution of compressional modes in exotic nuclei are also discussed.Comment: Review paper to appear in "Progress in Particle and Nuclear Physics
    • …
    corecore