10 research outputs found

    Character of superposed states under deterministic LOCC

    Full text link
    In this paper we investigate the effect of superposition of states on local conversion of pure bipartite states under deterministic LOCC. We are able to form a bridge between comparable and incomparable classes of states through the linear superposition of states. For example, if we consider two pairs of incomparable states, then their superposition may result into a comparable pair of states. We investigate many such cases and provide some of the results in tabular form. We also investigate the entanglement behavior of such classes of states, specifically their monotone nature. Finally we provide some bounds of different measures of entanglement based on the idea of comparability and incomparability under deterministic LOCC.Comment: 9 pages, pdflatex, no figure, to appear in the journal Quantum Information Processin

    Peculiarities of Bounds on States through the Concept of Linear Superposition

    Get PDF
    We investigate the effect of superposition of states on local conversion of pure bipartite states under deterministic LOCC. We also investigate the entanglement behaviour of such classes of states, specifically their monotone nature. Finally we are able to construct some counterintuitive situations, on the bounds of different measures of entanglement, emphasis on the idea of comparability and incomparability under deterministic LOCC

    Exact and Asymptotic Measures of Multipartite Pure State Entanglement

    Full text link
    In an effort to simplify the classification of pure entangled states of multi (m) -partite quantum systems, we study exactly and asymptotically (in n) reversible transformations among n'th tensor powers of such states (ie n copies of the state shared among the same m parties) under local quantum operations and classical communication (LOCC). With regard to exact transformations, we show that two states whose 1-party entropies agree are either locally-unitarily (LU) equivalent or else LOCC-incomparable. In particular we show that two tripartite Greenberger-Horne-Zeilinger (GHZ) states are LOCC-incomparable to three bipartite Einstein-Podolsky-Rosen (EPR) states symmetrically shared among the three parties. Asymptotic transformations result in a simpler classification than exact transformations. We show that m-partite pure states having an m-way Schmidt decomposition are simply parameterizable, with the partial entropy across any nontrivial partition representing the number of standard ``Cat'' states (|0^m>+|1^m>) asymptotically interconvertible to the state in question. For general m-partite states, partial entropies across different partitions need not be equal, and since partial entropies are conserved by asymptotically reversible LOCC operations, a multicomponent entanglement measure is needed, with each scalar component representing a different kind of entanglement, not asymptotically interconvertible to the other kinds. In particular the m=4 Cat state is not isentropic to, and therefore not asymptotically interconvertible to, any combination of bipartite and tripartite states shared among the four parties. Thus, although the m=4 cat state can be prepared from bipartite EPR states, the preparation process is necessarily irreversible, and remains so even asymptotically.Comment: 13 pages including 3 PostScript figures. v3 has updated references and discussion, to appear Phys. Rev.

    Investigating the Global Properties of a Resource Theory of Contextuality

    Full text link
    Resource theories constitute a powerful theoretical framework and a tool that captures, in an abstract structure, pragmatic aspects of the most varied theories and processes. For physical theories, while this framework deals directly with questions about the concrete possibilities of carrying out tasks and processes, resource theories also make it possible to recast these already established theories on a new language, providing not only new perspectives on the potential of physical phenomena as valuable resources for technological development, for example, but they also provide insights into the very foundations of these theories. In this work, we will investigate some properties of a resource theory for quantum contextuality, an essential characteristic of quantum phenomena that ensures the impossibility of interpreting the results of quantum measurements as revealing properties that are independent of the set of measurements being made. We will present the resource theory to be studied and investigate certain global properties of this theory using tools and methods that, although already developed and studied by the community in other resource theories, had not yet been used to characterize resource theories of contextuality. In particular, we will use the so called cost and yield monotones, extending the results of reference Quantum 4, 280 (2020) to general contextuality scenarios.Comment: Preliminary version, comments welcom

    Catalysis in Quantum Information Theory

    Full text link
    Catalysts open up new reaction pathways which can speed up chemical reactions while not consuming the catalyst. A similar phenomenon has been discovered in quantum information science, where physical transformations become possible by utilizing a (quantum) degree of freedom that remains unchanged throughout the process. In this review, we present a comprehensive overview of the concept of catalysis in quantum information science and discuss its applications in various physical contexts.Comment: Review paper; Comments and suggestions welcome

    Quantum Indefinite Spacetime: Part II

    Get PDF
    We adopt an operational mode of thinking to study spacetime fluctuations and their impacts on questions of quantum gravity. Particular emphasis is put on studying causal structure fluctuations. The study is guided by the principle of causal neutrality, which says that fundamental concepts and laws of physics should be stated without assuming a definite spacetime causal structure. Most traditional concepts and theories of physics violate this principle. A major theme of this thesis is to upgrade the traditional concepts and theories in accordance with the principle of causal neutrality. Among other things, the thesis include works on the following. (1) An axiomatic derivation of the complex Hilbert space structure of quantum theory without assuming definite causal structure. (2) A so-called causally neutral quantum field theory (CNQFT) framework for algebraic quantum physics allowing indefinite causal structure. (3) A proposal that causal fluctuation regularizes quantum field ultraviolet divergences (UV) and that the UV regularizing correlation functions with causal fluctuations characterize the UV structure of physical states. (4) A study on quantitative measures of causality. (5) A so-called ``correlation networks'' framework to study quantum theory with indefinite causal structure, which generalizes previous frameworks. (6) New definitions of entanglement and entanglement measures that conform to the causal neutrality principle. (7) Ideas on finding a causally neutral analogue of Einstein's equation for quantum spacetime. (8) A simple theorem showing that the communication capacities of general correlations (with definite or indefinite causal structure) defined with respect to state transmission can be reduced to those of channels

    Resource Theories as Quantale Modules

    Get PDF
    We aim to counter the tendency for specialization in science by advancing a language that can facilitate the translation of ideas and methods between disparate contexts. The methods we address relate to questions of "resource-theoretic nature". In a resource theory, one identifies resources and allowed manipulations that can be used to transform them. Some of the main questions are: How to optimize resources? What are the trade-offs between them? Can a given resource be converted to another one via the allowed manipulations? Because of the ubiquity of such questions, methods for answering them in one context can be used to tackle corresponding questions in new contexts. The translation occurs in two stages. Firstly, concrete methods are generalized to the abstract language to find under what conditions they are applicable. Then, one can determine whether potentially novel contexts satisfy these conditions. Here, we mainly focus on the first part of this two-stage process. The thesis starts with a more thorough introduction to resource theories and our perspective on them in chapter 1. Chapter 2 then provides a selection of mathematical ideas that we make heavy use of in the rest of the manuscript. In chapter 3, we present two variants of the abstract framework, whose relations to existing ones are summarized in table 1.1. The first one, universally combinable resource theories, offers a structure in which resources, desired tasks, and resource manipulations may all be viewed as "generalized resources". Blurring these distinctions, whenever appropriate, is a simplification that lets us understand the abstract results in elementary terms. It offers a slightly distinct point of view on resource theories from the traditional one, in which resources and their manipulations are considered independently. In this sense, the second framework in terms of quantale modules follows the traditional conception. Using these, we make contributions towards the task of generalizing concrete methods in chapter 4 by studying the ways in which meaningful measures of resources may be constructed. One construction expresses a notion of cost (or yield) of a resource, summarized in its generalized form in theorems 4.21 and 4.22. Among other applications, this construction may be used to extend measures from a subset of resources to a larger domain—such as from states to channels and other processes. Another construction allows the translation of resource measures between resource theories. A particularly useful version thereof is the translation of measures of distinguishability to other resource theories, which we study in detail. Special cases include resource robustness and weight measures as well as relative entropy based measures quantifying minimal distinguishability from freely available resources. We instantiate some of these ideas in a resource theory of distinguishability in chapter 5. It describes the utility of systems with probabilistic behavior for the task of distinguishing between hypotheses, which said behavior may depend on

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore