4,636 research outputs found

    Hydra: An Accelerator for Real-Time Edge-Aware Permeability Filtering in 65nm CMOS

    Full text link
    Many modern video processing pipelines rely on edge-aware (EA) filtering methods. However, recent high-quality methods are challenging to run in real-time on embedded hardware due to their computational load. To this end, we propose an area-efficient and real-time capable hardware implementation of a high quality EA method. In particular, we focus on the recently proposed permeability filter (PF) that delivers promising quality and performance in the domains of HDR tone mapping, disparity and optical flow estimation. We present an efficient hardware accelerator that implements a tiled variant of the PF with low on-chip memory requirements and a significantly reduced external memory bandwidth (6.4x w.r.t. the non-tiled PF). The design has been taped out in 65 nm CMOS technology, is able to filter 720p grayscale video at 24.8 Hz and achieves a high compute density of 6.7 GFLOPS/mm2 (12x higher than embedded GPUs when scaled to the same technology node). The low area and bandwidth requirements make the accelerator highly suitable for integration into SoCs where silicon area budget is constrained and external memory is typically a heavily contended resource

    EIE: Efficient Inference Engine on Compressed Deep Neural Network

    Full text link
    State-of-the-art deep neural networks (DNNs) have hundreds of millions of connections and are both computationally and memory intensive, making them difficult to deploy on embedded systems with limited hardware resources and power budgets. While custom hardware helps the computation, fetching weights from DRAM is two orders of magnitude more expensive than ALU operations, and dominates the required power. Previously proposed 'Deep Compression' makes it possible to fit large DNNs (AlexNet and VGGNet) fully in on-chip SRAM. This compression is achieved by pruning the redundant connections and having multiple connections share the same weight. We propose an energy efficient inference engine (EIE) that performs inference on this compressed network model and accelerates the resulting sparse matrix-vector multiplication with weight sharing. Going from DRAM to SRAM gives EIE 120x energy saving; Exploiting sparsity saves 10x; Weight sharing gives 8x; Skipping zero activations from ReLU saves another 3x. Evaluated on nine DNN benchmarks, EIE is 189x and 13x faster when compared to CPU and GPU implementations of the same DNN without compression. EIE has a processing power of 102GOPS/s working directly on a compressed network, corresponding to 3TOPS/s on an uncompressed network, and processes FC layers of AlexNet at 1.88x10^4 frames/sec with a power dissipation of only 600mW. It is 24,000x and 3,400x more energy efficient than a CPU and GPU respectively. Compared with DaDianNao, EIE has 2.9x, 19x and 3x better throughput, energy efficiency and area efficiency.Comment: External Links: TheNextPlatform: http://goo.gl/f7qX0L ; O'Reilly: https://goo.gl/Id1HNT ; Hacker News: https://goo.gl/KM72SV ; Embedded-vision: http://goo.gl/joQNg8 ; Talk at NVIDIA GTC'16: http://goo.gl/6wJYvn ; Talk at Embedded Vision Summit: https://goo.gl/7abFNe ; Talk at Stanford University: https://goo.gl/6lwuer. Published as a conference paper in ISCA 201

    Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future Directions

    Get PDF
    In the past decade, Convolutional Neural Networks (CNNs) have demonstrated state-of-the-art performance in various Artificial Intelligence tasks. To accelerate the experimentation and development of CNNs, several software frameworks have been released, primarily targeting power-hungry CPUs and GPUs. In this context, reconfigurable hardware in the form of FPGAs constitutes a potential alternative platform that can be integrated in the existing deep learning ecosystem to provide a tunable balance between performance, power consumption and programmability. In this paper, a survey of the existing CNN-to-FPGA toolflows is presented, comprising a comparative study of their key characteristics which include the supported applications, architectural choices, design space exploration methods and achieved performance. Moreover, major challenges and objectives introduced by the latest trends in CNN algorithmic research are identified and presented. Finally, a uniform evaluation methodology is proposed, aiming at the comprehensive, complete and in-depth evaluation of CNN-to-FPGA toolflows.Comment: Accepted for publication at the ACM Computing Surveys (CSUR) journal, 201

    PI-BA Bundle Adjustment Acceleration on Embedded FPGAs with Co-observation Optimization

    Full text link
    Bundle adjustment (BA) is a fundamental optimization technique used in many crucial applications, including 3D scene reconstruction, robotic localization, camera calibration, autonomous driving, space exploration, street view map generation etc. Essentially, BA is a joint non-linear optimization problem, and one which can consume a significant amount of time and power, especially for large optimization problems. Previous approaches of optimizing BA performance heavily rely on parallel processing or distributed computing, which trade higher power consumption for higher performance. In this paper we propose {\pi}-BA, the first hardware-software co-designed BA engine on an embedded FPGA-SoC that exploits custom hardware for higher performance and power efficiency. Specifically, based on our key observation that not all points appear on all images in a BA problem, we designed and implemented a Co-Observation Optimization technique to accelerate BA operations with optimized usage of memory and computation resources. Experimental results confirm that {\pi}-BA outperforms the existing software implementations in terms of performance and power consumption.Comment: in Proceedings of IEEE FCCM 201
    • …
    corecore