2,073 research outputs found

    Transcriptome Analyses of Tumor-Adjacent Somatic Tissues Reveal Genes Co-Expressed with Transposable Elements

    Get PDF
    Background: Despite the long-held assumption that transposons are normally only expressed in the germ-line, recent evidence shows that transcripts of transposable element (TE) sequences are frequently found in the somatic cells. However, the extent of variation in TE transcript levels across different tissues and different individuals are unknown, and the co-expression between TEs and host gene mRNAs have not been examined. Results: Here we report the variation in TE derived transcript levels across tissues and between individuals observed in the non-tumorous tissues collected for The Cancer Genome Atlas. We found core TE co-expression modules consisting mainly of transposons, showing correlated expression across broad classes of TEs. Despite this co-expression within tissues, there are individual TE loci that exhibit tissue-specific expression patterns, when compared across tissues. The core TE modules were negatively correlated with other gene modules that consisted of immune response genes in interferon signaling. KRAB Zinc Finger Proteins (KZFPs) were over-represented gene members of the TE modules, showing positive correlation across multiple tissues. But we did not find overlap between TE-KZFP pairs that are co-expressed and TE-KZFP pairs that are bound in published ChIP-seq studies. Conclusions: We find unexpected variation in TE derived transcripts, within and across non-tumorous tissues. We describe a broad view of the RNA state for non-tumorous tissues exhibiting higher level of TE transcripts. Tissues with higher level of TE transcripts have a broad range of TEs co-expressed, with high expression of a large number of KZFPs, and lower RNA levels of immune genes

    Genomic landscape of hepatocellular carcinoma in Egyptian patients by whole exome sequencing

    Get PDF
    Background: Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Chronic hepatitis and liver cirrhosis lead to accumulation of genetic alterations driving HCC pathogenesis. This study is designed to explore genomic landscape of HCC in Egyptian patients by whole exome sequencing. Methods: Whole exome sequencing using Ion Torrent was done on 13 HCC patients, who underwent surgical intervention (7 patients underwent living donor liver transplantation (LDLT) and 6 patients had surgical resection}. Results: Mutational signature was mostly S1, S5, S6, and S12 in HCC. Analysis of highly mutated genes in both HCC and Non-HCC revealed the presence of highly mutated genes in HCC (AHNAK2, MUC6, MUC16, TTN, ZNF17, FLG, MUC12, OBSCN, PDE4DIP, MUC5b, and HYDIN). Among the 26 significantly mutated HCC genes—identified across 10 genome sequencing studies—in addition to TCGA, APOB and RP1L1 showed the highest number of mutations in both HCC and Non-HCC tissues. Tier 1, Tier 2 variants in TCGA SMGs in HCC and Non-HCC (TP53, PIK3CA, CDKN2A, and BAP1). Cancer Genome Landscape analysis revealed Tier 1 and Tier 2 variants in HCC (MSH2) and in Non-HCC (KMT2D and ATM). For KEGG analysis, the significantly annotated clusters in HCC were Notch signaling, Wnt signaling, PI3K-AKT pathway, Hippo signaling, Apelin signaling, Hedgehog (Hh) signaling, and MAPK signaling, in addition to ECM-receptor interaction, focal adhesion, and calcium signaling. Tier 1 and Tier 2 variants KIT, KMT2D, NOTCH1, KMT2C, PIK3CA, KIT, SMARCA4, ATM, PTEN, MSH2, and PTCH1 were low frequency variants in both HCC and Non-HCC. Conclusion: Our results are in accordance with previous studies in HCC regarding highly mutated genes, TCGA and specifically enriched pathways in HCC. Analysis for clinical interpretation of variants revealed the presence of Tier 1 and Tier 2 variants that represent potential clinically actionable targets. The use of sequencing techniques to detect structural variants and novel techniques as single cell sequencing together with multiomics transcriptomics, metagenomics will integrate the molecular pathogenesis of HCC in Egyptian patients

    The VPS ReplaySuite: development and evaluation of a novel, Internet based telepathology tool

    Get PDF
    The ReplaySuite is a web-based telepathology tool that replicates the doubleheaded microscope environment online, enabling a reviewing pathologist to ‘replay’ an archived virtual slide examination. Examination-tracking data obtained by the Virtual Pathology Slide (VPS) virtual slide viewer is exploited, allowing a remote pathologist to review an examination conducted at a different time and location. This removes temporal and spatial issues associated with double-headed microscopy. In order to conduct a preliminary evaluation of the technology, 9 pathologists used the ReplaySuite to review examination replays and diagnostic data from archived examinations of 10 needlecore breast biopsies. Diagnostically difficult cases were most frequently evaluated, either via diagnostic concordance graphs or examination replays, and all 3 participants who replayed more than 10 examinations stated the ReplaySuite to be of some or great benefit in pathology training and quality assurance. Of those who replayed an examination by another pathologist, 83% (5/6) agreed that replays provided an insight into the examining pathologists diagnosis, and 33% (2/6) reconsidered their own diagnosis for at least one case. Of those who reconsidered their original diagnosis, all reclassified either concordant with group consensus or original glass slide diagnosis. This study demonstrated that the ReplaySuite was of potential benefit in pathology education, however the technology required evaluation in a setting that would facilitate its impact on diagnostic performance. Accordingly, a redeveloped VPS and ReplaySuite were incorporated into the EQUALIS External Quality Assurance (EQA) study in chronic hepatitis staging and grading. During the study, 9 Swedish pathology departments examined and scored digital representations of liver needlecore biopsies during two sessions, with 10 cases per session and two digital slides per case. Between scoring sessions, participants were provided with access to two supplementary electronic resources: the ReplaySuite, and a library of pre-selected reference images. Comparison of concordance with gold standard (KVAST group) scoring before and after electronic resource use facilitated the elucidation of impact on diagnostic performance. Between scoring sessions, participant concordance with KVAST staging increased by 18% (49%-67%), while concordance with KVAST grading increased by 20% (34%-54%). Mean staging un-weighted kappa improved from 0.347 to 0.554 (+0.207), or from ‘fair’ to ‘moderate’ exact agreement with KVAST staging. Linear weighted staging kappa improved from 0.603 to 0.688 (+0.085), indicating close agreement in both sessions. Mean grading unweighted kappa increased from 0.132 to 0.412 (+0.280), or from a ‘poor’ to ‘moderate’ level o f exact agreement with KVAST, while linear weighted kappa improved from 0.328 to 0.624 (+0.295), or from ‘fair’ to ‘good’ level of approximate agreement with KVAST. Subsequent to the EQA scheme, an expert liver pathologist used the ReplaySuite to evaluate study examinations, assessing examination technique and identifying sources of error. Examinations scoring concordant with KVAST were observed to exhibit acceptable examination technique more frequently than discordantly scoring examinations. When grading, 28% (46% - 18%) more concordant than discordant examinations were considered to have viewed sufficient tissue, and at the appropriate magnification. A similar disparity of 24% (59% - 35%) was observed in staging, suggesting that examination technique was important both when determining the degree of necroinflammation within a biopsy, and when ascertaining the extent of fibrosis. In assessing sources of error, the expert pathologist identified a potential source in 50% of grading examinations, with misinterpretation of observed pathology cited in 19%, and missed pathology (oversight) cited in 31% of grading examinations. Of the 41% of staging examinations in which a source was identified, misinterpretation of observed pathology was cited in 20% of examinations, and missed pathology (oversight) in 21% of examinations. This study demonstrated that the use of supplementary electronic resources could result in improvements in diagnostic performance. It also illustrated the significant ‘add on’ value that could be provided by the ReplaySuite in EQA, by providing means to assess not only diagnostic concordance, but also diagnostic technique and identify sources of error. In order to assess Irish trainee pathologist’s perceptions of computer-assisted learning (CAL), a number of commercial systems were utilised to incorporate digital slides into a postgraduate seminar series, and provide subsequent access to seminar digital slides, diagnoses and expert annotations online. All surveyed trainees considered the use of digital slides and expert annotations of benefit in pathology training, and considered the potential implementation of expert examination replays, online self-assessment and the capability to search online for material by organ, diagnosis or pathological feature of benefit. The work described herein illustrates that both expert and trainee pathologists alike consider the use of supplementary electronic resources of benefit in pathology education, and demonstrates that their use can improve diagnostic performance. The ability to evaluate participation in EQA studies via the ReplaySuite provides significant additional value to education schemes, providing a depth of assessment not possible with conventional microscopy

    Development of a Deep Learning System for Intra-Operative Identification of Cancer Metastases

    Full text link
    For several cancer patients, operative resection with curative intent can end up in early recurrence of the cancer. Current limitations in peri-operative cancer staging and especially intra-operative misidentification of visible metastases is likely the main reason leading to unnecessary operative interventions in the affected individuals. Here, we evaluate whether an artificial intelligence (AI) system can improve recognition of peritoneal surface metastases on routine staging laparoscopy images from patients with gastrointestinal malignancies. In a simulated setting evaluating biopsied peritoneal lesions, a prototype deep learning surgical guidance system outperformed oncologic surgeons in identifying peritoneal surface metastases. In this environment the developed AI model would have improved the identification of metastases by 5% while reducing the number of unnecessary biopsies by 28% compared to current standard practice. Evaluating non-biopsied peritoneal lesions, the findings support the possibility that the AI system could identify peritoneal surface metastases that were falsely deemed benign in clinical practice. Our findings demonstrate the technical feasibility of an AI system for intra-operative identification of peritoneal surface metastases, but require future assessment in a multi-institutional clinical setting.Comment: 14 page

    Identification of cancer hallmarks in patients with non-metastatic colon cancer after surgical resection

    Get PDF
    Colon cancer is one of the most common cancers in the world, and the therapeutic workflow is dependent on the TNM staging system and the presence of clinical risk factors. However, in the case of patients with non-metastatic disease, evaluating the benefit of adjuvant chemotherapy is a clinical challenge. Radiomics could be seen as a non-invasive novel imaging biomarker able to outline tumor phenotype and to predict patient prognosis by analyzing preoperative medical images. Radiomics might provide decisional support for oncologists with the goal to reduce the number of arbitrary decisions in the emerging era of personalized medicine. To date, much evidence highlights the strengths of radiomics in cancer workup, but several aspects limit the use of radiomics methods as routine. The study aimed to develop a radiomic model able to identify high-risk colon cancer by analyzing pre-operative CT scans. The study population comprised 148 patients: 108 with non-metastatic colon cancer were retrospectively enrolled from January 2015 to June 2020, and 40 patients were used as the external validation cohort. The population was divided into two groups—High-risk and No-risk—following the presence of at least one high-risk clinical factor. All patients had baseline CT scans, and 3D cancer segmentation was performed on the portal phase by two expert radiologists using open-source software (3DSlicer v4.10.2). Among the 107 radiomic features extracted, stable features were selected to evaluate the inter-class correlation (ICC) (cut-off ICC > 0.8). Stable features were compared between the two groups (T-test or Mann–Whitney), and the significant features were selected for univariate and multivariate logistic regression to build a predictive radiomic model. The radiomic model was then validated with an external cohort. In total, 58/108 were classified as High-risk and 50/108 as No-risk. A total of 35 radiomic features were stable (0.81 ≀ ICC <  0.92). Among these, 28 features were significantly different between the two groups (p < 0.05), and only 9 features were selected to build the radiomic model. The radiomic model yielded an AUC of 0.73 in the internal cohort and 0.75 in the external cohort. In conclusion, the radiomic model could be seen as a performant, non-invasive imaging tool to properly stratify colon cancers with high-risk diseas

    Automatic Population of Structured Reports from Narrative Pathology Reports

    Get PDF
    There are a number of advantages for the use of structured pathology reports: they can ensure the accuracy and completeness of pathology reporting; it is easier for the referring doctors to glean pertinent information from them. The goal of this thesis is to extract pertinent information from free-text pathology reports and automatically populate structured reports for cancer diseases and identify the commonalities and differences in processing principles to obtain maximum accuracy. Three pathology corpora were annotated with entities and relationships between the entities in this study, namely the melanoma corpus, the colorectal cancer corpus and the lymphoma corpus. A supervised machine-learning based-approach, utilising conditional random fields learners, was developed to recognise medical entities from the corpora. By feature engineering, the best feature configurations were attained, which boosted the F-scores significantly from 4.2% to 6.8% on the training sets. Without proper negation and uncertainty detection, the quality of the structured reports will be diminished. The negation and uncertainty detection modules were built to handle this problem. The modules obtained overall F-scores ranging from 76.6% to 91.0% on the test sets. A relation extraction system was presented to extract four relations from the lymphoma corpus. The system achieved very good performance on the training set, with 100% F-score obtained by the rule-based module and 97.2% F-score attained by the support vector machines classifier. Rule-based approaches were used to generate the structured outputs and populate them to predefined templates. The rule-based system attained over 97% F-scores on the training sets. A pipeline system was implemented with an assembly of all the components described above. It achieved promising results in the end-to-end evaluations, with 86.5%, 84.2% and 78.9% F-scores on the melanoma, colorectal cancer and lymphoma test sets respectively

    UK and Ireland Joint Advisory Group (JAG) consensus statements for training and certification in diagnostic endoscopic ultrasound (EUS)

    Get PDF
    Background and Aims: International endoscopy societies vary in their approach for credentialing individuals in endoscopic ultrasound (EUS) to enable independent practice; however, there is no consensus in this or its implementation. In 2019, the Joint Advisory Group on GI Endoscopy (JAG) commissioned a working group to examine the evidence relating to this process for EUS. The aim of this was to develop evidence-based recommendations for EUS training and certification in the UK.Methods: Under the oversight of the JAG quality assurance team, a modified Delphi process was conducted which included major stakeholders from the UK and Ireland. A formal literature review was made, initial questions for study were proposed and recommendations for training and certification in EUS were formulated after a rigorous assessment using the Grading of Recommendation Assessment, Development and Evaluation tool and subjected to electronic voting to identify accepted statements. These were peer reviewed by JAG and relevant stakeholder societies before consensus on the final EUS certification pathway was achieved.Results: 39 initial questions were proposed of which 33 were deemed worthy of assessment and finally formed the key recommendations. The statements covered four key domains, such as: definition of competence (13 statements), acquisition of competence (10), assessment of competence (5) and postcertification mentorship (5). Key recommendations include: (1) minimum of 250 hands-on cases before an assessment for competency can be made, (2) attendance at the JAG basic EUS course, (3) completing a minimum of one formative direct observation of procedural skills (DOPS) every 10 cases to allow the learning curve in EUS training to be adequately studied, (4) competent performance in summative DOPS assessments and (5) a period of mentorship over a 12-month period is recommended as minimum to support and mentor new service providers.Conclusions: An evidence-based certification pathway has been commissioned by JAG to support and quality assure EUS training. This will form the basis to improve quality of training and safety standards in EUS in the UK and Ireland.</p
    • 

    corecore