94,497 research outputs found

    Using the ISO/IEC 9126 product quality model to classify defects : a Controlled Experiment

    Get PDF
    Background: Existing software defect classification schemes support multiple tasks, such as root cause analysis and process improvement guidance. However, existing schemes do not assist in assigning defects to a broad range of high level software goals, such as software quality characteristics like functionality, maintainability, and usability. Aim: We investigate whether a classification based on the ISO/IEC 9126 software product quality model is reliable and useful to link defects to quality aspects impacted. Method: Six different subjects, divided in two groups with respect to their expertise, classified 78 defects from an industrial web application using the ISO/IEC 9126 quality main characteristics and sub-characteristics, and a set of proposed extended guidelines. Results: The ISO/IEC 9126 model is reasonably reliable when used to classify defects, even using incomplete defect reports. Reliability and variability is better for the six high level main characteristics of the model than for the 22 sub- characteristics. Conclusions: The ISO/IEC 9126 software quality model provides a solid foundation for defect classification. We also recommend, based on the follow up qualitative analysis performed, to use more complete defect reports and tailor the quality model to the context of us

    Correct and Control Complex IoT Systems: Evaluation of a Classification for System Anomalies

    Full text link
    In practice there are deficiencies in precise interteam communications about system anomalies to perform troubleshooting and postmortem analysis along different teams operating complex IoT systems. We evaluate the quality in use of an adaptation of IEEE Std. 1044-2009 with the objective to differentiate the handling of fault detection and fault reaction from handling of defect and its options for defect correction. We extended the scope of IEEE Std. 1044-2009 from anomalies related to software only to anomalies related to complex IoT systems. To evaluate the quality in use of our classification a study was conducted at Robert Bosch GmbH. We applied our adaptation to a postmortem analysis of an IoT solution and evaluated the quality in use by conducting interviews with three stakeholders. Our adaptation was effectively applied and interteam communications as well as iterative and inductive learning for product improvement were enhanced. Further training and practice are required.Comment: Submitted to QRS 2020 (IEEE Conference on Software Quality, Reliability and Security

    Software development: A paradigm for the future

    Get PDF
    A new paradigm for software development that treats software development as an experimental activity is presented. It provides built-in mechanisms for learning how to develop software better and reusing previous experience in the forms of knowledge, processes, and products. It uses models and measures to aid in the tasks of characterization, evaluation and motivation. An organization scheme is proposed for separating the project-specific focus from the organization's learning and reuse focuses of software development. The implications of this approach for corporations, research and education are discussed and some research activities currently underway at the University of Maryland that support this approach are presented
    • …
    corecore