14,897 research outputs found

    In defense of wireless carrier sense

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references.Carrier sense, or clear channel assessment (CCA), is widely used in wireless medium access control (MAC) protocols as the means to arbitrate access and regulate concurrency, striking a balance between interference protection and spatial reuse. Criticized widely in the literature, carrier sense has been subject to many replacement attempts with sophisticated and complex alternatives, yet it remains extremely popular. Is the search for a superior alternative justified? In this thesis, we develop a physically motivated theoretical model for average case carrier sense behavior in the two-sender case, based upon radio propagation theory and Shannon capacity. We argue from our model that common notions about carrier sense, such as the hidden and exposed terminal phenomena, are inherently misleading in the context of adaptive bitrate, casting in black and white terms effects that often cause only mild reduction in throughput. The frequency of severe misbehavior is low. We also demonstrate that it is possible to choose a fixed sense threshold which performs well across a wide range of scenarios, in large part due to the role of the noise floor. The noise floor has a significant effect on fairness as well. Using our model, we show that, when implemented well, average-case carrier sense performance is surprisingly close to optimal. We conclude with experimental results from our indoor 802.11 testbed, which corroborate these claims.by Micah, Z. Brodsky.S.M

    In Defense of Wireless Carrier Sense

    Get PDF
    Carrier sense is often used to regulate concurrency in wireless medium access control (MAC) protocols, balancing interference protection and spatial reuse. Carrier sense is known to be imperfect, and many improved techniques have been proposed. Is the search for a replacement justified? This paper presents a theoretical model for average case two-sender carrier sense based on radio propagation theory and Shannon capacity. Analysis using the model shows that carrier sense performance is surprisingly close to optimal for radios with adaptive bitrate. The model suggests that hidden and exposed terminals usually cause modest reductions in throughput rather than dramatic decreases. Finally, it is possible to choose a fixed sense threshold which performs well across a wide range of scenarios, in large part due to the role of the noise floor. Experimental results from an indoor 802.11 testbed support these claims

    Distributed CSMA with pairwise coding

    Get PDF
    We consider distributed strategies for joint routing, scheduling, and network coding to maximize throughput in wireless networks. Network coding allows for an increase in network throughput under certain routing conditions. We previously developed a centralized control policy to jointly optimize for routing and scheduling combined with a simple network coding strategy using max-weight scheduling (MWS) [9]. In this work we focus on pairwise network coding and develop a distributed carrier sense multiple access (CSMA) policy that supports all arrival rates allowed by the network subject to the pairwise coding constraint. We extend our scheme to optimize for packet overhearing to increase the number of beneficial coding opportunities. Simulation results show that the CSMA strategy yields the same throughput as the optimal centralized policy of [9], but at the cost of increased delay. Moreover, overhearing provides up to an additional 25% increase in throughput on random topologies.United States. Dept. of Defense. Assistant Secretary of Defense for Research & EngineeringUnited States. Air Force (Air Force Contract FA8721-05-C-0002

    Carrier Sense Random Packet CDMA Protocol in Dual-Channel Networks

    Get PDF
    Code resource wastage is caused by the reason that many hopping frequency (FH) sequences are unused, which occurs under the condition that the number of the actual subnets needed for the tactical network is far smaller than the networking capacity of code division net¬working. Dual-channel network (DCN), consisting of one single control channel and multiple data channels, can solve the code resource wastage effectively. To improve the anti-jamming capability of the control channel of DCN, code division multiple access (CDMA) technology was introduced, and a carrier sense random packet (CSRP) CDMA protocol based on random packet CDMA (RP-CDMA) was proposed. In CSRP-CDMA, we provide a carrier sensing random packet mechanism and a packet-segment acknowledgement policy. Furthermore, an analytical model was developed to evaluate the performance of CSRP-CDMA networks. In this model, the impacts of multi-access interference from both inter-clusters and intra-clusters were analyzed, and the mathematical expressions of packet transmission success probability, normalized network throughput and signal interference to noise ratio, were also derived. Analytical and simulation results demonstrate that the normalized network throughput of CSRP-CDMA outperforms traditional RP-CDMA by 10%, which can guarantee the resource utilization efficiency of the control channel in DCNs
    • …
    corecore