4 research outputs found

    Effective Permittivity of Biological Tissue: Comparison of Theoretical Model and Experiment

    Get PDF
    Permittivity of biological tissue is a critical issue for studying the biological effects of electromagnetic fields. Many theories and experiments were performed to measure or explain the permittivity characteristics in biological tissue. In this paper, we investigate the permittivity parameter in biological tissues via theoretical and experimental analysis. Firstly, we analyze the permittivity characteristic in tissue by using theories on composite material. Secondly, typical biological tissues, such as blood, fat, liver, and brain, are measured by HP4275A Multi-Frequency LCR Meter within 10 kHz to 10 MHz. Thirdly, experimental results are compared with the Bottcher-Bordewijk model, the Skipetrov equation, and the Maxwell-Gannett theory. From the theoretical perspective, blood and fat are regarded as the composition of liver and brain because of the high permittivity in blood and the opposite in fat. Volume fraction of blood in liver and brain is analyzed theoretically, and the applicability and the limitation of the models are also discussed. These results benefit further study on local biological effects of electromagnetic fields

    Recent advances in noninvasive glucose monitoring

    Get PDF
    Author name used in this publication: Chi-Fuk SoAuthor name used in this publication: Joanne W. Y. Chung2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    In vivo blood characterization from bioimpedance spectroscopy of blood pooling

    No full text
    Characterization of blood impedance properties is important to estimate clinical diagnostic indexes such as hematocrit, glucose level, and hydration. Current in vivo bioimpedance spectroscopy methods are performed on a body appendage and thus represent a combined measurement of all tissues in the measurement field, rather than the blood individually. This paper describes a novel in vivo measurement technique to calculate bioelectrical properties of blood while excluding the disturbances from surrounding tissues, based on analysis of the impedance changes caused by blood accumulation. The forearm was modeled as a cylinder containing anatomical structures such as skin-fat layer, muscles, and bones. Blood volume was modeled as the inner cylinder. A tetrapolar electrode system was applied to a human forearm, and the impedance curves measured with and without blood pooling were processed to calculate the impedance parameters of arterial blood. The bioelectrical parameters of blood were estimated by fitting the blood curve to a Cole-Cole model using the Levenberg-Marquardt (LM) nonlinear curve-fitting method. The proposed approach was verified using an experimental phantom, an equivalent circuit model, and a preliminary human experiment. Results show that electrical properties of blood and surrounding tissues can successfully be separated. Of Cole-Cole parameters, the characteristic frequency fc is the most reliable parameter to characterize blood bioelectrical properties. This method may allow a simplified measurement of blood characteristic parameters for many biomedical and clinical monitoring applications
    corecore