6 research outputs found

    Template-based Monocular 3D Shape Recovery using Laplacian Meshes

    Get PDF
    We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3D meshes, we can turn the monocular 3D shape reconstruction of a deformable surface given correspondences with a reference image into a well-posed problem. Our approach allows us to reduce the dimensionality of the surface reconstruction problem without sacrificing accuracy, thus allowing for real-time implementations

    In defence of RANSAC for outlier rejection in deformable registration

    No full text
    This paper concerns the robust estimation of non-rigid deformations from feature correspondences. We advance the surprising view that for many realistic physical deformations, the error of the mismatches (outliers) usually dwarfs the effects of the curvature of the manifold on which the correct matches (inliers) lie, to the extent that one can tightly enclose the manifold within the error bounds of a low-dimensional hyperplane for accurate outlier rejection. This justifies a simple RANSAC-driven deformable registration technique that is at least as accurate as other methods based on the optimisation of fully deformable models. We support our ideas with comprehensive experiments on synthetic and real data typical of the deformations examined in the literature.Quoc-Huy Tran, Tat-Jun Chin, Gustavo Carneiro, Michael S. Brown and David Sute

    Template-based Monocular 3-D Shape Reconstruction And Tracking Using Laplacian Meshes

    Get PDF
    This thesis addresses the problem of recovering the 3-D shape of a deformable object in single images, or image sequences acquired by a monocular video camera, given that a 3-D template shape and a template image of the object are available. While being a very challenging problem in computer vision, being able to reconstruct and track 3-D deformable objects in videos allows us to develop many potential applications ranging from sports and entertainments to engineering and medical imaging. This thesis extends the scope of deformable object modeling to real-world applications of fully 3-D modeling of deformable objects from video streams with a number of contributions. We show that by extending the Laplacian formalism, which was first introduced in the Graphics community to regularize 3-D meshes, we can turn the monocular 3-D shape reconstruction of a deformable object given correspondences with a reference image into a much better-posed problem with far fewer degrees of freedom than the original one. This has proved key to achieving real-time performance while preserving both sufficient flexibility and robustness. Our real-time 3-D reconstruction and tracking system of deformable objects can very quickly reject outlier correspondences and accurately reconstruct the object shape in 3D. Frame-to-frame tracking is exploited to track the object under difficult settings such as large deformations, occlusions, illumination changes, and motion blur. We present an approach to solving the problem of dense image registration and 3-D shape reconstruction of deformable objects in the presence of occlusions and minimal texture. A main ingredient is the pixel-wise relevancy score that we use to weigh the influence of the image information from a pixel in the image energy cost function. A careful design of the framework is essential for obtaining state-of-the-art results in recovering 3-D deformations of both well- and poorly-textured objects in the presence of occlusions. We study the problem of reconstructing 3-D deformable objects interacting with rigid ones. Imposing real physical constraints allows us to model the interactions of objects in the real world more accurately and more realistically. In particular, we study the problem of a ball colliding with a bat observed by high speed cameras. We provide quantitative measurements of the impact that are compared with simulation-based methods to evaluate which simulation predictions most accurately describe a physical quantity of interest and to improve the models. Based on the diffuse property of the tracked deformable object, we propose a method to estimate the environment irradiance map represented by a set of low frequency spherical harmonics. The obtained irradiance map can be used to realistically illuminate 2-D and 3-D virtual contents in the context of augmented reality on deformable objects. The results compare favorably with baseline methods. In collaboration with Disney Research, we develop an augmented reality coloring book application that runs in real-time on mobile devices. The app allows the children to see the coloring work by showing animated characters with texture lifted from their colors on the drawing. Deformations of the book page are explicitly modeled by our 3-D tracking and reconstruction method. As a result, accurate color information is extracted to synthesize the character's texture
    corecore