6,701 research outputs found

    Jitter and phase noise in ring oscillators

    Get PDF
    A companion analysis of clock jitter and phase noise of single-ended and differential ring oscillators is presented. The impulse sensitivity functions are used to derive expressions for the jitter and phase noise of ring oscillators. The effect of the number of stages, power dissipation, frequency of oscillation, and short-channel effects on the jitter and phase noise of ring oscillators is analyzed. Jitter and phase noise due to substrate and supply noise is discussed, and the effect of symmetry on the upconversion of 1/f noise is demonstrated. Several new design insights are given for low jitter/phase-noise design. Good agreement between theory and measurements is observed

    A general theory of phase noise in electrical oscillators

    Get PDF
    A general model is introduced which is capable of making accurate, quantitative predictions about the phase noise of different types of electrical oscillators by acknowledging the true periodically time-varying nature of all oscillators. This new approach also elucidates several previously unknown design criteria for reducing close-in phase noise by identifying the mechanisms by which intrinsic device noise and external noise sources contribute to the total phase noise. In particular, it explains the details of how 1/f noise in a device upconverts into close-in phase noise and identifies methods to suppress this upconversion. The theory also naturally accommodates cyclostationary noise sources, leading to additional important design insights. The model reduces to previously available phase noise models as special cases. Excellent agreement among theory, simulations, and measurements is observed

    Oscillator phase noise: a tutorial

    Get PDF
    Linear time-invariant (LTI) phase noise theories provide important qualitative design insights but are limited in their quantitative predictive power. Part of the difficulty is that device noise undergoes multiple frequency translations to become oscillator phase noise. A quantitative understanding of this process requires abandoning the principle of time invariance assumed in most older theories of phase noise. Fortunately, the noise-to-phase transfer function of oscillators is still linear, despite the existence of the nonlinearities necessary for amplitude stabilization. In addition to providing a quantitative reconciliation between theory and measurement, the time-varying phase noise model presented in this tutorial identifies the importance of symmetry in suppressing the upconversion of 1/f noise into close-in phase noise, and provides an explicit appreciation of cyclostationary effects and AM-PM conversion. These insights allow a reinterpretation of why the Colpitts oscillator exhibits good performance, and suggest new oscillator topologies. Tuned LC and ring oscillator circuit examples are presented to reinforce the theoretical considerations developed. Simulation issues and the accommodation of amplitude noise are considered in appendixes

    Averaging approach to phase coherence of uncoupled limit-cycle oscillators receiving common random impulses

    Full text link
    Populations of uncoupled limit-cycle oscillators receiving common random impulses show various types of phase-coherent states, which are characterized by the distribution of phase differences between pairs of oscillators. We develop a theory to predict the stationary distribution of pairwise phase difference from the phase response curve, which quantitatively encapsulates the oscillator dynamics, via averaging of the Frobenius-Perron equation describing the impulse-driven oscillators. The validity of our theory is confirmed by direct numerical simulations using the FitzHugh-Nagumo neural oscillator receiving common Poisson impulses as an example

    Sensitivity analysis of oscillator models in the space of phase-response curves: Oscillators as open systems

    Full text link
    Oscillator models are central to the study of system properties such as entrainment or synchronization. Due to their nonlinear nature, few system-theoretic tools exist to analyze those models. The paper develops a sensitivity analysis for phase-response curves, a fundamental one-dimensional phase reduction of oscillator models. The proposed theoretical and numerical analysis tools are illustrated on several system-theoretic questions and models arising in the biology of cellular rhythms
    • …
    corecore