6,328 research outputs found

    Optimized Quality Factor of Fractional Order Analog Filters with Band-Pass and Band-Stop Characteristics

    Full text link
    Fractional order (FO) filters have been investigated in this paper, with band-pass (BP) and band-stop (BS) characteristics, which can not be achieved with conventional integer order filters with orders lesser then two. The quality factors for symmetric and asymmetric magnitude response have been optimized using real coded Genetic Algorithm (GA) for a user specified center frequency. Parametric influence of the FO filters on the magnitude response is also illustrated with credible numerical simulations.Comment: 6 pages, 13 figures; 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12), July 2012, Coimbator

    Fractional Spectral Moments for Digital Simulation of Multivariate Wind Velocity Fields

    Full text link
    In this paper, a method for the digital simulation of wind velocity fields by Fractional Spectral Moment function is proposed. It is shown that by constructing a digital filter whose coefficients are the fractional spectral moments, it is possible to simulate samples of the target process as superposition of Riesz fractional derivatives of a Gaussian white noise processes. The key of this simulation technique is the generalized Taylor expansion proposed by the authors. The method is extended to multivariate processes and practical issues on the implementation of the method are reported.Comment: 12 pages, 2 figure

    The fractional orthogonal derivative

    Full text link
    This paper builds on the notion of the so-called orthogonal derivative, where an n-th order derivative is approximated by an integral involving an orthogonal polynomial of degree n. This notion was reviewed in great detail in a paper in J. Approx. Theory (2012) by the author and Koornwinder. Here an approximation of the Weyl or Riemann-Liouville fractional derivative is considered by replacing the n-th derivative by its approximation in the formula for the fractional derivative. In the case of, for instance, Jacobi polynomials an explicit formula for the kernel of this approximate fractional derivative can be given. Next we consider the fractional derivative as a filter and compute the transfer function in the continuous case for the Jacobi polynomials and in the discrete case for the Hahn polynomials. The transfer function in the Jacobi case is a confluent hypergeometric function. A different approach is discussed which starts with this explicit transfer function and then obtains the approximate fractional derivative by taking the inverse Fourier transform. The theory is finally illustrated with an application of a fractional differentiating filter. In particular, graphs are presented of the absolute value of the modulus of the transfer function. These make clear that for a good insight in the behavior of a fractional differentiating filter one has to look for the modulus of its transfer function in a log-log plot, rather than for plots in the time domain.Comment: 32 pages, 7 figures. The section between formula (4.15) and (4.20) is correcte

    Fractional biorthogonal partners in channel equalization and signal interpolation

    Get PDF
    The concept of biorthogonal partners has been introduced recently by the authors. The work presented here is an extension of some of these results to the case where the upsampling and downsampling ratios are not integers but rational numbers, hence, the name fractional biorthogonal partners. The conditions for the existence of stable and of finite impulse response (FIR) fractional biorthogonal partners are derived. It is also shown that the FIR solutions (when they exist) are not unique. This property is further explored in one of the applications of fractional biorthogonal partners, namely, the fractionally spaced equalization in digital communications. The goal is to construct zero-forcing equalizers (ZFEs) that also combat the channel noise. The performance of these equalizers is assessed through computer simulations. Another application considered is the all-FIR interpolation technique with the minimum amount of oversampling required in the input signal. We also consider the extension of the least squares approximation problem to the setting of fractional biorthogonal partners

    Single channel nonstationary signal separation using linear time-varying filters

    Get PDF
    corecore