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Abstract

Separability of signal mixtures given only one mixture observation is defined as the identification of

the accuracy to which the signals can be separated. The paper shows that when signals are separated

using the generalised Wiener filter, the degree of separability can be deduced from the signal structure.

To identify this structure, the processes are represented on an general spectral domain, and a sufficient

solution to the Wiener filter is obtained. The filter is composed of a term independent of the signal values,

corresponding to regions in the spectral domain where the desired signal components are not distorted

by interfering noise components, and a term dependent on the signal correlations, corresponding to the

region where components overlap. An example of determining perfect separability of modulated random

signals is given with application in radar and speech processing.

Keywords

nonstationary processes, linear time-varying systems, Wiener-Hopf filter, ideal filter, integral trans-

form, bifrequency transfer function.

I. Introduction

This paper investigates the separability of signal mixtures given, at each time instance, only

one observation of the mixture in the temporal domain. In this context, separability means

identifying whether the mixture of two signals can be separated to a given degree of accuracy.

The problem of actually separating the signals is referred to as signal separation. Formally:

Definition 1 (Signal Separability) Suppose a desired signal, d(t),1 is corrupted by an ad-

ditive noise signal, n(t), such that the observation, x(t), of the desired signal is given by

x(t) = d(t) + n(t), ∀t ∈ T ⊂ R. The problem of separability is to determine conditions on

d(t) and n(t) such that an estimate of the desired signal, d̂(t), ∀t ∈ T , can be obtained, from

x(t), to a given degree of accuracy using a time-varying filter.

A. Structure of Paper

This paper presents a detailed exposition of separating nonstationary stochastic signals using

linear time-varying (LTV), and is structured as follows. The introductory section and §II continue

with an overview of the factors that affect the classes of signals which are separable by LTV

filters. In §III, the generalised power spectrum (GPS) is introduced, and its relationships with

1Scalar stochastic processes are denoted by a roman font, while scalar deterministic processes are represented

by normal type; e.g. x(t) denotes a random variable. Bold symbols denote vectors of stochastic processes.
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Fig. 1. Separability of signals in the time domain.

the stochastic spectral representation of a random process is discussed, and in §IV, the generalised

bifrequency transfer function is presented. Zadeh’s deterministic ideal filter is reviewed in §V-A,

and §V-B presents solutions (first published in [1, 2]) of the nonstationary Wiener-Hopf filter

from a viewpoint that leads to a formal criterion for determining when two classes of signals are

separable. Finally, in §V-D to §VII the separation of ‘modulated’ random signals is discussed

with application in radar and speech processing.

B. Separation Techniques

A general separability criterion is difficult to derive since any such result would be a function

of the separation method. To illustrate this, consider the separability of two signals that do

not overlap in the time domain. These signals can be separated using a temporal switch – a

special case of a LTV filter. Separability criteria for these signals depend on the times for which

they have non-zero components; i.e. τd = {t ∈ R : d(t) 6= 0} ⊂ R and τn = {t ∈ R : n(t) 6=

0} ⊂ R. To recover d(t), the impulse response of the LTV filter, as defined in §IV, is given by

h(t, τ) = δ(t − τ)Iτd
(t), where Iτd

(t) = 1 if t ∈ τd, and 0 otherwise. These signals cannot be

separated using a linear time-invariant (LTI) filter and, therefore, in such a case, no separability

criteria would exist and separation would appear to be impossible. Separability criteria are

derived assuming that separation is achieved using LTV filters. However, even if signals are not

separable under the criterion derived here, they are not necessarily inseparable: it merely implies

they are not separable using deterministic LTV filters designed under the specific choice of cost

function discussed below.

Signal separation with one observation sensor can only be achieved by exploiting prior knowl-

edge of the signal structure, since the separation problem is inherently under-constrained. More-

over, it is desirable that any prior knowledge necessary for signal separation can be specified such
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Fig. 2. Separability of signals in the Fourier domain.

that it is common to a ‘class’ of stochastic processes. This prior information must somehow be

determined for a particular problem. So, for example, it is well known that stationary stochastic

signals are ‘perfectly’ separable if their power spectra do not overlap in the Fourier domain.

Separation can be achieved using a bandpass filter as shown in Figure 2, when the frequencies

in the pass-band, ωd = {ω ∈ R : |D(ω)| > 0} ⊂ R and ωn = {ω ∈ R : |N(ω)| > 0} ⊂ R, are

known a priori, where d(t) 
 D(ω) and n(t) 
 N(ω). It is not, however, necessary to know the

particular set of values of D(ω) and N(ω).

Since finite bandwidth non-overlapping signals in the Fourier domain can be separated using

a LTI bandpass filter, and finite duration non-overlapping signals in the time-domain can be

separated using a LTV filter (a switch), this suggests there might exist an arbitrary domain such

that the representation of two classes of signals are disjoint and, therefore, separation can be

achieved using a generalised bandpass filter on that domain. If such a domain does exist, then

the question of how it can be determined from the data must be considered.

II. Signal Separation using LTV filters

Definition 2 (Perfect Signal Separation) ‘Perfect’ separation of deterministic signals is achieved

when the estimate of the desired signal identically equals the desired signal for all desired time

instances. ‘Perfect’ separation of stochastic signals is achieved when the mean squared error

(MSE), σ2(t), between the estimate of the desired signal, d̂(t), and the actual desired signal,

d(t),

σ2(t) , E

{

| d̂(t) − d(t) |2
}

(1)

is zero at each desired time instance; {σ2(t) = 0; ∀t ∈ T }. E {·} denotes expectation.

As a result of using a second-order cost function, it proves necessary to use the second-order

statistics of random signals. The autocorrelation function (ACF) describes a stochastic process
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in the time domain and, at times (t, τ) ∈ T 2 = T × T, T ⊂ R, is defined by:

Rxx (t, τ) = E {x(t) x∗(τ)} , (t, τ) ∈ T 2 (2)

Estimation of the correlation functions of a nonstationary process is hindered by the fact that

ensemble averages are extremely burdensome or impossible to obtain [3–5]. Separation is achieved

by LTV filtration of x(t):

d̂(t) =

∫

T
h(t, α) x(α) dα, ∀t ∈ T (3)

where the impulse response of the filter, h(t, τ), is the response at time t given an impulse

occurred at its input at time τ . The cost function dictates that the filter is designed to minimise

σ2(t), leading to the nonstationary Wiener-Hopf filter (WHF):

Theorem 1 (Nonstationary Wiener-Hopf Filter) The filter, h(t, τ), minimising the MSE

between d̂(t) and d(t) of (3) is called the Wiener-Hopf filter and is given, for all (t, τ) ∈ T × T ,

by the solution of the convolution [6]:

Rdx (t, τ) =

∫

T
h(t, α)Rxx (α, τ) dα (4a)

with the MSE given, for all t ∈ T , by:

σ2(t) = Rdd (t, t) −

∫

T
h(t, α)Rdx (t, α) dα (4b)

For ‘perfect separation’ {σ2(t) = 0; ∀t ∈ T} and, thus, the ACFs must satisfy:

Rdd (t, t) =

∫

T
h(t, α)Rdx (t, α) dα, ∀t ∈ T (4c)

III. Power Spectra for Nonstationary Stochastic Processes

The power spectrum of a stationary stochastic process is a powerful tool in the analysis of

LTI systems; it would be useful to extend the definition of the power spectrum for stationary

processes to the nonstationary case.

A. Notion of Power Spectra for Nonstationary Signals

The notion of power spectra for nonstationary signals has been investigated in great depth,

beginning with the classic works of Gabor [7]. Cohen [8, 9], gives an excellent overview of

time-frequency analysis for deterministic signals. More recently, Hammond and White [10] also

give an excellent review discussing further time-frequency distributions including, for example,

July 25, 2002 DRAFT
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Loèves’ Harmonizable processes [11–15]. A comprehensive and far reaching contribution was

made by Mark [16] in which the ‘physical’ spectrum was introduced; Loynes [17] and Turner

[18], inter alios, discuss the concept of the power spectrum for nonstationary processes and, in

general, the discussion centres around the concept of ‘time-varying spectra’. Priestley [15] intro-

duces the notion of the evolutionary spectrum (ES), and numerous researchers have discussed

its theoretical framework [17, 19] and its generalisations [20–22]. Lampard [23] generalises the

Wiener-Khintchine theorem to nonstationary processes, and that definition of the power spec-

trum is essentially equivalent to the Page distribution [8]. Cohen [24] reviews a general approach

for obtaining joint signal representations using general linear decompositions which analyse sig-

nals in terms of physical quantities other than just time and frequency, for example, time and

scale in wavelet transforms; in [25] Sayeed and Jones discuss the connection between current

approaches to joint signal representations. Cohen [26] also discusses the generalisation of the

stationary autocorrelation function and its power spectral density in terms of a general basis

set, giving a corresponding generalisation of the Wiener-Khintchine theorem. Silverman [11]

defines a locally stationary process through a separable correlation function, and generalises the

Wiener-Khintchine theorem for such processes. A number of fractional-time-frequency (FTF)

decompositions, such as the fractional-Fourier transform are discussed in Ozaktaz et al. [27].

Further investigations of correlation functions and power spectra for nonstationary processes can

be found in [13, 18, 28–32] and references therein.

For many of these time-frequency distributions, much emphasis is placed on ensuring there

is a meaningful physical interpretation of the power spectra. Each of these power spectral

representations have the same motivation behind their development: to find another domain

in which the statistical properties of a signal can be represented in a more ‘useful’ form, or to

provide an environment in which a problem becomes easier to solve. The development of the

generalised power spectrum (GPS) in the following sections is based on the theory of linear signal

decomposition for representing a stochastic process on an arbitrary power spectral domain.

DRAFT July 25, 2002
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B. Spectra of Deterministic Processes

B.1 Continuous Time and Continuous Spectral Domains

The representation of a continuous time deterministic signal, x(t), on an arbitrary continuous

spectral domain, λ ∈ Λ ⊂ C, is X(λ), defined by the integral transform:

X(λ) =

∫

T

x(t)K(t, λ) dt , ∀λ ∈ Λ (5a)

where Λ is the region in the signal space in which the representation X(λ) lies, and the function

K(t, λ) is called the direct transform basis kernel. Conversely, X(λ) may be represented on the

time-domain t ∈ T ⊂ R as x(t):

x(t) =

∫

Λ
X(λ) k(λ, t) dλ , ∀t ∈ T (5b)

where k(λ, t) is called the inverse transform or reciprocal basis kernel of K(t, λ). The transfor-

mation is assumed isomorphic so, for a given x(t), there exists a unique X(λ) and, conversely,

for a given X(λ), there exists a unique x(t). By extending the definition of a function to include

the Dirac δ function, it can be shown that k(λ, t) and K(t, λ) must satisfy:

δ(t − τ) =

∫

Λ
K(t, λ) k(λ, τ) dλ , ∀(t, τ) ∈ T 2 (6a)

δ(λ − λ̂) =

∫

T

k(λ, t)K(t, λ̂) dt , ∀(λ, λ̂) ∈ Λ2 (6b)

where Λ2 = Λ × Λ. Any pair of such functions satisfying these equations for (t, λ) ∈ T × Λ is

called a transform pair over T × Λ.

C. Stochastic Spectral Transforms

The spectral transform for deterministic signals may be extended to random signals, with a

particular realisation of a stochastic process decomposed as the superposition or integral of basis

functions with stochastic coefficients. The stochastic spectral representation of a continuous

stochastic process, x(t), on an arbitrary continuous spectral domain, λ ∈ Λ ⊂ C, is X(λ), defined

by:

X(λ) =

∫

T

x(t)K(t, λ) dt , ∀λ ∈ Λ (7a)

where this integral is interpreted in a mean square (MS) limit. Conversely, X(λ) may be repre-

sented on the time domain, t ∈ T ⊂ R, as x̂(t):

x̂(t) =

∫

Λ
X(λ) k(λ, t) dλ , ∀t ∈ T (7b)

July 25, 2002 DRAFT
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Theorem 2 (MS Equality of Integral Transforms) The representation x̂(t) equals x(t) in

the mean square (MS) sense:

E
{

| x(t) − x̂(t) |2
}

= 0 , ∀t ∈ T (8)

Proof: This is a generalisation of the proof given in [33, Chapter 12, pp. 414].

D. Generalised Power Spectrum

The spectral decomposition of (7a) implies the ACF of the random variable X(λ), P x̂x̂(λ, λ̂) ,

E

{

X(λ)X∗(λ̂)
}

, may be written ∀(λ, λ̂) ∈ Λ2 as:

Px̂x̂(λ, λ̂) =

∫∫

T 2

Rxx (t, τ) K(t, λ)K∗(τ, λ̂) dt dτ (9)

The ACF of a nonstationary stochastic process is a well defined 2-D deterministic function and,

therefore, as a natural extension to the concept of the stationary power spectrum, it may be

expressed on an arbitrary spectral domain using a 2-D integral transform:

Pxx(λ, λ̂) =

∫∫

T 2

Rxx (t, τ) K̂(t, τ, λ, λ̂) dt dτ , ∀(λ, λ̂) ∈ Λ2

Considering the form of the ACF of X(λ) in (9), it is natural to assume K̂(t, τ, λ, λ̂) admits a

separable form: i.e. K̂(t, τ, λ, λ̂) , K(t, λ)K(τ, λ̂), (λ, λ̂, t, τ) ∈ Λ2 × T 2.

Definition 3 (Generalised Power Spectrum) The generalised power spectrum (GPS) of

the process x(t) and its inverse relationship are defined as:

Pxx(λ, λ̂) =

∫∫

T 2

Rxx (t, τ) K(t, λ)K∗(τ, λ̂) dt dτ (10a)

Rxx (t, τ) =

∫∫

Λ2

Pxx(λ, λ̂) k(λ, t) k∗(λ̂, τ) dλ dλ̂ (10b)

where K(t, λ) and k(λ, t) are related by (6). Some basic relations follow: 1) P ∗
xx(λ, λ̂) = Pxx(λ̂, λ),

2) Px̂x̂(λ, λ̂) = Pxx(λ, λ̂), and 3) Rx̂x̂ (t, τ) = Rxx (t, τ).

Finally, suppose that a signal y(t) admits a similar representation to (7), so that {y(t), t ∈

T } 
 {Y(λ), λ ∈ ΛY }, then Rŷx̂ (t, τ) = E {ŷ(t) x̂∗(τ)} may be written as:

Rŷx̂ (t, τ) =

∫∫

Λ̂XΛ̂Y

Pŷ x̂(λ, λ̂) k(λ, t) k∗(λ̂, τ) dλ dλ̂ (11)
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∀(t, τ) ∈ T 2, where Λ̂X ≡ ΛX ⊕ Λ0, Λ̂Y ≡ ΛY ⊕ Λ0 and Pŷ x̂(λ, λ̂) = E

{

Y(λ)X∗(λ̂)
}

, and

⊕ is the orthogonal direct sum. Here, ΛX ⊂ Λ and ΛY ⊂ Λ are the regions over which the

spectral components of x̂(t) and ŷ(t), respectively, do not overlap, and Λ0 ⊂ Λ is the region over

which they do. The limits in (11) reduce to Λ0 × Λ0 since Pŷ x̂(λ, λ̂) = E

{

Y(λ)X∗(λ̂)
}

= 0 if

(λ, λ̂) ∈ ΛX × ΛY , etc.

Definition 4 (Generalised Cross Power Spectrum) The generalised cross power spectrum

(GCPS) of the processes y(t) and x(t), ∀(λ, λ̂) ∈ Λ2
0 = Λ0 ×Λ0, Λ0 ⊂ Λ, and its inverse relation-

ship are defined ∀(t, τ) ∈ T 2 as:

Pyx(λ, λ̂) =

∫∫

T 2

Ryx (t, τ) K(t, λ)K∗(τ, λ̂) dt dτ (12a)

Ryx (t, τ) =

∫∫

Λ2

0

Pyx(λ, λ̂) k(λ, t) k∗(λ̂, τ) dλ dλ̂ (12b)

IV. Transfer functions

In signal theory, the concept of a transfer function of a LTI system is very important and,

thus, it is natural to extend the definition of a transfer function to LTV systems. The approach

used here takes advantage of a generalisation of the bifrequency transfer function of a filter

[34–37], which is of fundamental importance in the study of LTV systems. The generalised

bifrequency transfer function (GBTF) is sometimes called the kernel function of the system

[38]. An alternative definition of a transfer function, called the general system function, of

which the well-known Zadeh’s transform is a special case [34], is not pursued here, although

direct relationships exist [2]. References to other work in the literature discussing generalised

frequency response concepts for LTV systems can be found in, for example, [34, 35, 39–43].

The input–output relation for a LTV system may be specified by the well known time-domain

superposition integral [41]:

y(t) =

∫

T

h(t, τ) x(τ) dτ, ∀t ∈ T (13)

where y(t) is the response of the linear system to the input x(t), and h(t, τ), is the LTV impulse

response at time t to an impulse occurring at the system input at time τ . The term impulse

response is not uniquely defined in the LTV system literature and, in many publications, the

impulse response is also given by ĥ(t, τ) = h(t, t − τ). The form in (13) is used throughout this

work since it corresponds to the usual definition for the kernel of a linear integral operator [21].
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Let X(λ) be the representation of the signal x(t) on the domain λ. If the input signal, x(t),

is filtered by a linear operator, L, then the output is given by y(t) = L x(t), and represented

on the domain λ using equations (7). It is assumed that the initial state of the filters discussed

throughout this paper, is rest (zero initial conditions).

Theorem 3 (Transfer Function of a LTV System) The impulse response of the system L

may be written in the separable form:

h(t, τ) =

∫∫

Λ2

H(λ, λ̂) k(λ, t)K(τ, λ̂) dλ dλ̂ (14a)

∀(t, τ) ∈ T 2, where {k(λ, t), K(t, λ), (t, λ) ∈ T × Λ} is a transform kernel pair given by (6), and

H(λ, λ̂) is the generalised bifrequency transfer function of L, given by,

H(λ, λ̂) =

∫∫

T 2

h(t, τ)K(t, λ) k(λ̂, τ) dt dτ (14b)

∀(λ, λ̂) ∈ Λ2.

Proof: The proof centres around the proof of (14a): given the definition of the GBTF,

H(λ, λ̂), (14b) follows naturally from the definition of the integral transforms (5) as shown

below. Since L is a linear operator on functions of t only, then:

y(t) = L x(t) =

∫

Λ
X(λ)L{k(λ, t)} dλ (15)

Substituting (7a) into (15) gives,

y(t) =

∫∫

TΛ

x(τ)L{k(λ, t)} K(τ, λ) dλ dτ (16)

Comparing with equation (13) the impulse response may be written as:

h(t, τ) =

∫

Λ
L{k(λ, t)} K(τ, λ) dλ (17)

Considering L{k(λ, t)} as a function of t, and treating λ as a parameter, it may be represented

by the general transform (5b) with spectrum H(λ, λ̂) defined by

L
{

k(λ̂, t)
}

,

∫

Λ
H(λ, λ̂) k(λ, t) dλ (18a)

Substituting (18a) into (17) gives (14a). Moreover, L{k(λ̂, t)} may also be expressed as:

L
{

k(λ̂, t)
}

=

∫

T

h(t, τ) k(λ̂, τ) dτ (18b)
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This expression is obtained by either inverting transform (17), with τ considered as a parameter,

or by using the superposition integral, (13), with k̂(λ, t) as the input. By inverting (18a), with

λ̂ as a parameter, gives,

H(λ, λ̂) =

∫

T

L
{

k(λ̂, t)
}

K(t, λ) dt (18c)

which, along with (18b), gives equation (14b).

Theorem 4 (Spectral Convolution) The relationship between the spectral functions Y(λ)

and X(λ) is:

Y(λ) =

∫

Λ
H(λ, λ̂)X(λ̂) dλ̂ (19)

Gersho [40] provides equivalent forms of spectral convolution for the case when alternative defi-

nitions of the impulse response are used; a discussion of analogous results may also be found in

recent work by Margrave [43].

Proof: This follows by substituting (15) into the expression for Y(λ) as determined from

equations (7), rearranging the order of integration, and using (18c).

V. Separation Techniques

A. The Ideal Filter

The concept of the bandpass filter is commonly understood to be a system which passes,

without distortion, all Fourier frequency components falling in a certain frequency range, the

filter’s pass-band, and rejects all frequency components falling outside this range, the stop-band.

The ideal bandpass filter is often referred to as an ideal filter. Hence, a generalised ideal filter is

defined on any arbitrary domain as an operator which passes, without distortion, all generalised

spectral components within a given range, and rejects all others [44–48]:

Definition 5 (Spectral Response) A linear operator, L, is said to be an ideal filter over the

λ-domain for an input space X if, for any x(t) ∈ X , the representation of y(t) = L x(t), Y(λ), on

the domain λ is given by:

Y(λ) =











0 if λ /∈ ΛH

X(λ) if λ ∈ ΛH

(20)

where X(λ) is the representation of x(t) on the λ-domain, and the acceptance region of L,

ΛH ⊂ Λ, is a subset of the generalised frequency space Λ.

The definition of an ideal filter applies to random signals by considering the interpretation of

an ensemble space of a stochastic process [33].
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Theorem 5 (Existence of an Ideal Filter) A linear operator, L, is said to be an ideal filter

if, and only if, there exists a basis, K(t, λ), and reciprocal basis, k(λ, t), defining the transform

pair (5), and satisfying (6), such that:

L{k(λ, t)} =











0 if λ /∈ ΛH

k(λ, t) if λ ∈ ΛH

(21)

Proof: Sufficiency

Let L be a linear operator satisfying (21) with respect to the basis set k(λ, t). Then, substi-

tuting (21) into (18c) and using (6b), gives:

H(λ, λ̂) =











0 if λ /∈ ΛH

δ(λ − λ̂) if λ ∈ ΛH

(22)

which, after substitution into (19), gives Definition 5. Hence, L is an ideal filter.

Necessity

Let L be an ideal filter over the domain of λ ∈ Λ for an input space X . Then, from (19), and

by Definition 5, H(λ, λ̂) must satisfy (22) and, consequently, from (6b) and (18c), L{k(λ, t)} is

given by (21).

Theorem 6 (Impulse Response) An ideal filter over the domain λ ∈ Λ with impulse response

h(t, τ) may be represented in the ‘separable’ form

h(t, τ) =

∫

ΛH

k(λ, t)K(τ, λ) dλ, (t, τ) ∈ T 2 (23)

where ΛH is the filter’s passband.

Proof: Follows from (17) and Theorem 5.

B. Spectral Solution of the Nonstationary Wiener Filter

General solutions to the nonstationary Wiener-Hopf filter defined in (4a) are not easily found,

although it is easy to show [49] that the solution of the Wiener-Hopf equations can be reduced

to the factorisation, or decomposition, of the correlation functions Rxx (t, τ) and Rdx (t, τ) [49–

54]. Further, techniques which attempt to estimate the correlation functions of nonstationary

processes from a single realisation rely on a similar decomposition [3–5].
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B.1 Spectral Solution

A sufficient solution to the nonstationary Wiener-Hopf filter equations can be readily obtained

by the factorisation of the ACFs into generalised power spectra. A necessary condition for a

solution is not presented, inasmuch as there may be solutions for signal structures other than

that defined in equation (7); this result is presented in [1, 2].

Theorem 7 (WHF Solution) Suppose Rdd (t, τ), Rnn (t, τ) and Rdn (t, τ) can be written as

the generalised spectral decompositions of (10b) and (12b) respectively, such that:

Rdd (t, τ) =

∫∫

Λ̂2

d

Pdd(λ, λ̂) k(λ, t) k∗(λ̂, τ) dλ dλ̂ (24a)

Rnn (t, τ) =

∫∫

Λ̂2
n

Pnn(λ, λ̂) k(λ, t) k∗(λ̂, τ) dλ dλ̂ (24b)

Rdn (t, τ) =

∫∫

Λ2

0

Pdn(λ, λ̂) k(λ, t) k∗(λ̂, τ) dλ dλ̂ (24c)

where (t, τ) ∈ T 2, Λ̂d ≡ Λd ⊕ Λ0 and Λ̂n ≡ Λn ⊕ Λ0. Here, Λd ⊂ Λ and Λn ⊂ Λ are the regions

of the Λ ⊂ C space over which the spectral components of {d(t), t ∈ T} and {n(t), t ∈ T},

respectively, do not overlap, and Λ0 ⊂ Λ is the region over which spectral components of d(t)

and n(t) do overlap. A sufficient solution, h(t, τ), to the WHF equation (4a) for the additive

case, when T ≡ T ⊂ R, is given by (14a) where the GBTF H(λ, λ̂), is given by:

H(λ, λ̂) =



























δ(λ − λ̂) for {λ, λ̂} ∈ Λ2
d,

H0(λ, λ̂) for {λ, λ̂} ∈ Λ2
0,

0 elsewhere.

(25a)

where Λ2
d = Λd × Λd, Λ2

0 = Λ0 × Λ0, and the function H0(λ, λ̂) is the solution of

Pdx(λ, λ̂) =

∫

Λ0

H0(λ, λ̄)Pxx(λ̄, λ̂) dλ̄ (25b)

∀(λ, λ̂) ∈ Λ2
0. Further, H0(λ, λ̂) = 0, ∀ (λ, λ̂) /∈ Λ2

0. The filter, h(t, τ), may, therefore, be written

as

h(t, τ) =

∫

Λd

k(λ, t)K(τ, λ) dλ

+

∫∫

Λ2

0

H0(λ, λ̂) k(λ, t)K(τ, λ̂) dλ dλ̂
(25c)
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where Pxx(·) = Pdx(·) + Pnx(·), Pdx(·) = Pdd(·) + Pdn(·) and Pnx(·) = Pnd(·) + Pnn(·). The

resulting MSE is:

σ2(t) =

∫∫

Λ2

0

Pσσ(λ, λ̂) k(λ, t) k∗(λ̂, t) dλ dλ̂ (25d)

where the spectrum of σ2(t) is given by:

Pσσ(λ, λ̂) = Pdd(λ, λ̂) −

∫

Λ0

H0(λ, λ̄)Pdx(λ̄, λ̂) dλ̄ (25e)

=

∫

Λ0

H0(λ, λ̄)
{

Pnd(λ̄, λ̂) + Pnn(λ̄, λ̂)
}

dλ̄ (25f)

It is assumed the initial state of the filter h(t, τ) is at rest.

Proof: See appendix.

B.2 Signal Separability

The first term in (25c) corresponds to the expression for an ideal filter which passes the

generalised frequency range Λd and thus corresponds to perfect separation of the non-overlapping

signal components. Moreover, this term, unlike the second, does not depend on full knowledge of

the autocorrelation functions, inasmuch as it does not depend on the actual values of the signals

n(t) or d(t), but only on the ‘generalised’ frequency bands over which the signal components do

not overlap.

Theorem 8 (Ideal Filter Component) The WHF, h(t, τ), which gives perfect separation, is

an ideal filter (23), assuming that the signals have disjoint generalised spectral components.

Proof: This is a direct corollary of Theorem 7. The MSE (25d) is zero, if Λ0 ≡ {∅}. This

implies d(t) and n(t) are uncorrelated.

Since the ideal filter is independent of the signal values, it separates the class of all nonstationary

stochastic signals that are disjoint in the filter’s domain, provided the desired signal components

lie in its passband.

C. Selecting Transform Kernels

In §V-B, it is demonstrated that if two signals lie in some domain, λ, and are disjoint, then

perfect signal separation is achievable given appropriate prior knowledge of the signal structure.

However, no mention has yet been made of how the transform domains are chosen. One valid

solution to the signal separability problem is to choose all possible kernels, {k(λ, t), (λ, t) ∈ Λ ×
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T}, and classify as separable all pairs of stochastic processes admitted by this representation that

are disjoint in this domain. Such an approach is exhaustive and does not provide a satisfactory

solution to the more general question of whether two processes are separable given the form of

their autocorrelation functions. Another approach, presented here, relies on finding a common

domain in which the representation of two signals are disjoint. This is achieved by concatenating

the basis functions for each individual signal representation to find a common domain.

The characteristics of the Wiener-Hopf filter in Theorem 7 were derived on the assumption that

the spectral representations of d(t) and n(t) are defined on a common domain. This, however,

appears restrictive and seems to indicate, for example, that a stationary process can be separated

from a nonstationary process if, and only if, they are disjoint in the Fourier domain; this is

clearly not the case. This apparent restriction is lifted by concatenating the different spectral

representations of each signal, d(t) and n(t), provided each representation is bandlimited in their

respective domains. So, for example, suppose d(t) is a stationary process expressed in the Fourier

domain, ω ∈ Ω ⊂ R, with basis set {kd(ω, t) = e−jωt, (ω, t) ∈ Ω×T}, and n(t) is a nonstationary

process, where d(t) and n(t) overlap in the Fourier domain. If n(t) is expressed in a domain,

λ ∈ Λ, with basis set {kn(λ, t), (λ, t) ∈ Λ × T}, where its representation N(λ) is bandlimited,

these domains can be combined as follows: the kernel in this concatenated domain, λ̂ ∈ Λ̂ ⊂ C,

denoted by {k(λ̂, t), (λ̂, t) ∈ Λ̂ × T}, is constructed as:

k(λ̂, t) =











kn(λ(λ̂), t), {λ̂ : |N(λ(λ̂))| ≥ 0}

kd(ω(λ̂), t), {λ̂ : |D(ω(λ̂))| ≥ 0}

where λ(λ̂) and ω(λ̂) are isomorphic mappings of λ : Λ̂ → Λ and ω : Λ̂ → Ω, with Λ̂ ⊂ C.

In other words, the kernel in the region of Λ̂ on which the stationary signal is represented

corresponds to the Fourier kernel, while the kernel in the region of Λ̂ on which the nonstationary

signal is represented corresponds to kn(λ(λ̂), t). Assuming these regions are disjoint, this domain

exists if the transform is unique and, in such a case, the two signal classes are separable. If the

signals overlap in the λ̂-domain, then a transform pair cannot be derived since there is no unique

transform. The idea behind this ‘concatenation’ is summarised in Figure 3.
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Fig. 3. Concatenating power spectra.

Formalising this idea, suppose the ACFs of d(t) and n(t) admit the spectral representations:

Rdd (t, τ) =

∫∫

Λ2

D

Pdd(λ, λ̂) kd(λ, t) k∗
d(λ̂, τ) dλ dλ̂ (26a)

Rnn (t, τ) =

∫∫

Λ2

N

Pnn(λ, λ̂) kn(λ, t) k∗
n(λ̂, τ) dλ dλ̂ (26b)

for any Λd ⊂ Λ and Λn ⊂ Λ. Now, assume it is possible to apply a change of variables λ′
d : Λd →

Λ′
d and λ′

n : Λn → Λ′
n such that equations (26) become:

Rdd (t, τ) =

∫∫

Λ
′2

D

P ′
dd(λ, λ̂) k′

d(λ, t) k
′∗
d (λ̂, τ) dλ dλ̂ (27a)

Rnn (t, τ) =

∫∫

Λ
′2

N

P ′
nn(λ, λ̂) k′

n(λ, t) k
′∗
n (λ̂, τ) dλ dλ̂ (27b)

where Λ′
D ∩ Λ′

N = {∅}. In such a case, the spectral representations can be concatenated by

defining the concatenated kernel :

k(λ, t) =
∑

i

IΛi
(λ) k′

i(λ, t) (28)

∀(λ, t) ∈ Λ×T, i ∈ θ, where θ is the set of indices for the various spectral subsets, taking on the

elements ‘d’, ‘n’, and ‘v’ so θ = {d, n, v}; correspondingly, Θ , {D,N, V } contains the elements

‘D’, ‘N ’ and ‘V ’. The indicator function IΛ (λ) is defined as IΛ (λ) = 1 if λ ∈ Λ, and 0 otherwise.

Note further that ΛV is ‘unused’ space, such that
⊕

i∈Θ
Λi , ΛD ⊕ΛN ⊕ΛV = Λ. Assuming this

transform domain exists, it follows that the autocorrelation functions of d(t) and n(t) possess
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spectral representations on a domain with kernel k(λ, t) as defined in equation (28), rather than

the kernels k′
d(λ, t) and k′

n(λ, t) in equation (27). Since each of the autocorrelation functions

have been represented on the same transform domain, assuming one exists, it follows that these

processes can be separated by the ideal filter in equation (23). Ergo, from §III-B, such a domain

exists when k(λ, t) and K(t, λ) satisfy equations (6).

D. Separating Modulated Signals

Using the method in the previous section, separability constraints can be determined for the

class of filtered modulated signals which exhibit the general form:

d(t) =

∫

T

hd(t, τ) a(τ) dτ

n(t) =

∫

T

hn(t, τ) b(τ) dτ















t ∈ T (29)

where, assuming some prior knowledge regarding the structure of the signals d(t) and n(t), it is

known that d(t) and n(t) overlap in the time and Fourier spectral domains, a(t) and b(t) are

bandlimited to ±ωc but otherwise unknown, and hd(t, τ) and hn(t, τ) are known deterministic

signals.

Since a(t) and b(t) are bandlimited in the Fourier domain, they admit the representation

a(t) =

ωc
∫

−ωc

A(ω) ejωt dω, b(t) =

ωc
∫

−ωc

B(ω) ejωt dω (30a)

and, therefore, after substitution into (29), a little rearrangement, and use of the mappings

λd : Ω → Ω + ωc for d(t) and λn : Ω → Ω − ωc for n(t), it follows that d(t) and n(t) admit the

representations:

d(t) =

∫ 2ωc

0
D(λ) k(λ, t) dλ

n(t) =

∫ 0

−2ωc

N(λ) k(λ, t) dλ

(30b)

where λ ∈ Λ ⊂ R, and the kernel is defined as:

k(λ, t) =































∫

T

hd(t, τ) ej(λ−ωc)τ dτ for λ ∈ [0, 2ωc)
∫

T

hn(t, τ) ej(λ+ωc)τ dτ for λ ∈ [−2ωc, 0)

kv(λ, t) for λ /∈ (−2ωc, 2ωc)

(31)
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with the generalised spectral components given by D(λ) = A(λ − ωc) and N(λ) = B(λ + ωc).

If d(t) and n(t) are separable, k(λ, t) and K(t, λ) must satisfy (6): substitution of (31) into (6)

creates constraints on the filters hd(t, τ) and hn(t, τ).

VI. Discrete Case

A. Discrete Time and Discrete Spectral Domains

The spectral decomposition in the finite discrete time, and finite discrete spectral case is

conceptually simpler than the continuous case, since a transform from one domain to another can

be viewed as a change in basis vectors. The representation of a discrete time deterministic signal

{x(n), n ∈ N ⊂ Z} on an arbitrary finite support discrete spectral domain is {X(p), p ∈ P ⊂ Z},

where

X(p) =
∑

n∈N
x(n)K(n, p), x(n) =

∑

p∈P
X(p) k(p, n) (32)

corresponding to (5) for the continuous case. Assuming a non-degenerate transform, the kernels

satisfy:

∑

p∈P
K(n, p) k(p, n̂) = δ(n − n̂) , (n, n̂) ∈ N ×N (33a)

∑

n∈N
k(p, n)K(n, p̂) = δ(p − p̂) , (p, p̂) ∈ P × P (33b)

where δ(p) = 1 if p = 0 and 0 otherwise. Defining the vectors [x]n = x(n), [X]n = X(n), n ∈ N ,

and the kernel matrices [k]pn = k(p, n), [K]np = K(n, p), (n, p) ∈ N×P, then (32) can be written

compactly as:

X = KT x and x = kT X (34)

where T denotes the matrix transpose. Furthermore,

kK = Kk = IN (35)

where IN ∈ R
N×N is the identity matrix, and (35) is equivalent to (33) written in matrix form.

Observe that (35) implies the basis kernels must have full rank.

B. Concatenating Discrete Spectra

Following the same line of argument as in the continuous case in §V-D, suppose that the

autocorrelation functions of the two processes d(n) and n(n) can be written as two-dimensional
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transform pairs with kernels kd(p, n) and kn(p, n), respectively, and domains of summation given

by PD and PN , respectively, where
⊕

i∈Θ
Pi = P, PV is unused space, and PD ∩ PN = {∅}

etc. For such a domain to exist, the concatenated kernel k(p, n) must have an inverse. In the

discrete case, {k(p, n), (p, n) ∈ P × N} can be written as a matrix, and thus the existence

of the transform can be found by using linear algebra techniques. Assume, for clarity, that

{Pi, i ∈ Θ} are contiguous regions, given by PD = {0, . . . , PD − 1}, PN = {PD, . . . , PN − 1},

and PV = {PN , · · · , P − 1}, where P denotes the number of element in P; i.e. P = dimP. If

the matrices kd, kn and kv, whose elements are the values of their respectively named kernels,

are appropriately defined then:

kK =











kd

kn

kv











[

Kd

∣

∣

∣ Kn

∣

∣

∣ Kv

]

= IP (36)

C. Discrete Modulation

The results from §V-D carry across, mutatis mutandis, to the discrete-time discrete-spectrum

case, and it can be shown that by defining W np
N = 1

N
ejnp 2π

N , where N = dimN , and the matrices

[

k̂d

]

pn
= W

n(p−qc)
N , p ∈ PD,

[

k̂v

]

pn
= kv(p, n), p ∈ PV ,

[

k̂n

]

pn
= W

n(p+qc)
N , p ∈ PN ,

[

H[θ]i

]

nn̂
= h[θ]i(n, n̂)

where (n, n̂) ∈ N ×N , and Hd, Hn ∈ R
N×N , then k, defined in §VI-B, can be partitioned as:

kT =
[

Hd k̂T
d

∣

∣

∣
Hn k̂T

n

∣

∣

∣
k̂T

v

]

(37)

where k̂v are the unused basis vectors. The problem now is to find constraints on the matrices

Hd and Hn such that k has full rank. One physical way of interpreting the rôle of Hd and Hn in

(37) is to consider them as linear transformations of a(n) and b(n), mapping them to different

subspaces. Thus, d(n) and n(n) are not separable when these linear transformations map a(n)

and b(n) to overlapping subspaces.

Calculating Ideal Filter Matrix

Using the results in §VI-C, the ideal filter matrix to recover the signal d(t) can be calculated

as detailed in Algorithm 1. Provided the kernel matrix in (37) has full rank, the signals are

separable. An estimate of the desired signal, d(t), can be calculated by evaluating:
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Algorithm 1 Calculating Ideal Filter Matrix

1: Evaluate: Hd = diag [hd(t)], Hn = diag [hn(t)] and [kv]pt = W tp
N , p ∈ PV , t ∈ T , N = dimT .

2: Construct the inverse-kernel:

kT =
[

Hd k̂T
d

∣

∣

∣
Hn k̂T

n

∣

∣

∣
k̂T

v

]

(37)

3: if rank [k] = N then

4: Construct the generalised bandpass filter:

H = diag [12pc
| 0N−2pc

] (38)

where 12pc
∈ R

2pc and 0N−2pc
∈ R

N−2pc are vectors of ones and zeros respectively.

5: Evaluate the ideal filter matrix:

A = kT HKT (39)

6: else

7: Signals belonging to the class defined by equations (43) and (45) are inseparable.

8: end if

d̂ = Ax (40)

where A is given by equation (39).

D. Noise Gain for Filter Matrix

If an additional noise signal, w, appears at the input of the filter then, in general, it is passed

to the filter’s output. The noise gain of an ideal filter is defined as the gain in noise energy when

white noise passes through it.

Theorem 9 (Noise Gain) In the case of white noise, w, with variance σ2
w appearing at the input

of the filter defined by equation (39), the noise gain is given by:

ηWGN ,
E
{

y yT
}

E {wwT }
=

1

N
trace

[

AAT
]

(41)

where ‖B‖F denotes the Frobenius norm of a matrix B, and y is the output.

Proof: The output of the filter is given by y = Aw, and hence the total noise power at the

output is given by trace
[

yyT
]

= trace
[

AwwT A
]

. Taking expectations of both sides, noting

the linearity of the trace function, and noting E
{

wwT
}

= σ2
wI, gives the desired result.
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VII. Uniform Modulation

As an example of single channel separation, consider the special class of nonstationary signals

known as uniformly modulated processes, or amplitude modulated time series, characterised by

the form

y(t) = c(t) x(t), t ∈ T (42)

where x(t) is a stochastic process and c(t) is a known deterministic signal [15]. Such nonstationary

processes have been shown to describe the behaviour of seismic reflectivity data [15, 55] where,

for example, earthquake and explosion data have been modelled by (42), with x(t) as a zero

mean first-order autoregressive (AR) process, and the deterministic function given by c(t) =

tα ν−βt, with α, β and ν as known constants. The model in equation (42) is also appropriate for

modelling deterministic signals that have been corrupted by multiplicative noise, for example, in

radar applications where a target is illuminated and the signal experiences random time-varying

amplitude distortion caused either by target fluctuation, or scattering of the medium (e.g. fading)

[56, 57].

In this special case of uniformly modulated signals, the general form of (29) reduces to:

d(t) = hd(t) a(t)

n(t) = hn(t) b(t)











t ∈ T (43)

where a(t) and b(t) are stochastic processes bandlimited to ±ωc. The first two expressions of

the transform kernel in (31) reduce to:

k(λ, t) =











hd(t) ej(λ−ωc)t for λ ∈ [0, 2ωc)

hn(t) ej(λ+ωc)t for λ ∈ [−2ωc, 0)

(44)

It can be shown that in the range λ ∈ [−2ωc, 2ωc], k(λ, t) is a linear combination of the basis

set {ejωt, ∀ω ∈ Ω̂ ⊂ Ω}. To complete the basis set, kv(λ, t), which is itself a linear combination

of the set {ejωt, ∀ω ∈ Ω}, must not be a linear combination of k(λ, t) for λ ∈ {−2ωc, 2ωc}.

It can thence be deduced that if kv(λ, t) = ejg(λ) t, for some function g(λ), the basis set can

be completed provided that k(λ, t) is not degenerate in the range λ ∈ {−2ωc, 2ωc}. In many

cases, {kv(λ, t) = ejλt, ∀λ /∈ (−2ωc, 2ωc)} suitably extends the basis. Assuming that the set of

exponential basis functions for the unused transform space completes the set of basis functions

then, since the rank of the kernel matrix can readily be determined, the inverse kernel matrix in
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(37) can be readily constructed and its inverse calculated, facilitating the separation of separable

discrete–time signals. This is demonstrated by the following specific examples.

A. Separation of Chirp Modulated Signals

Suppose the desired and noise signals can be expressed in the form of (43), where T =

{0, . . . , T − 1}, and the deterministic functions, hd(t) and hn(t), are given by:

hd(t) = cos

[

2πfi
t

fs

(

1 +
1

τd

ff − fi

fi

t

fs

)]

hn(t) = cos

[

2πf ′
i

t

fs

(

1 +
1

τn

f ′
f − f ′

i

f ′
i

t

fs

)]



















t ∈ T (45)

where a(t) and b(t) are bandlimited to fc, the sampling frequency fs ≥ 4fc, the start and stop

sweep frequencies are given by (fi, f ′
i) ∈ R

2 and (ff , f ′
f ) ∈ R

2 respectively, and the frequency

sweep times are τ = (τd, τn) ∈ R
2. For convienience, define f = {fi, f ′

i , ff , f ′
f} ∈ R

4.

If {hd(t) = hn(t),∀t ∈ T }, separation is not possible since no additional signal structure

distinguishing d(t) and n(t) is available. However, by a continuity argument, it is reasonable to

assume that a small perturbation in one of the functions is not likely to make separation possible

either. Furthermore, if fc � f, ∀f ∈ f , such that a(t) and b(t) are only slightly modulated, it is

also reasonable to assume that there are not enough distinguishing features to achieve separation.

Continuity arguments suggest that d(t) and n(t) can be separated provided that the spectra of the

modulating signals, hd(t) and hn(t), differ sufficiently, but are not, in general, disjoint. Further,

the boundary frequencies, (fi, f ′
i) and (ff , f ′

f ), must be in the region of fc: i.e. to ensure a(t)

and b(t) are modulated such that d(t) and n(t) have significantly different characteristics.

As a particular example, Figure 4 shows the Fourier spectra of hd(t) and hn(t) of equation (45)

with fi = f ′
f = 4250 Hz, ff = f ′

i = 5750Hz, fs = 22.050 kHz, and τd = τn = 70msec; i.e. these

sweeps are identical, except they are in opposite directions. Consider taking T = 1000 samples

or 45msec worth of data, with fc = 5kHz (pc = 227 frequency bins), such that there will be

T −4pc = 92 unused generalised frequency bins. The ideal filter matrix to recover the signal d(t)

can be calculated as detailed in Algorithm 1. Provided the parameters f and τ are such that the

kernel matrix in (37) has full rank, the signals are separable. This is true in the case outlined

above, and the impulse response of the resulting ideal filter is shown in Figure 5.

Since the Fourier spectra of the modulating signals in Figure 4 overlap, so do the Fourier

spectra of d(t) and n(t). To emphasis this, consider the unknown bandlimited signals a(t)
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Fig. 4. Fourier spectra of hd(t), hn(t); fs = 22.050 kHz.

Fig. 5. The response of the ideal filter which recovers d(t) for the chirp modulated case.

and b(t) shown in Figure 6. The spectra of the resulting desired and noise signals, d(t) and

n(t), are shown in Figure 7, and clearly overlap, with the Fourier spectrum of x(t) shown in

Figure 8. Therefore, conventionally, d(t) and n(t) would be considered inseparable; however,

taking a generalised spectral transform using equation (34) with the kernel matrices derived

in equation (37), gives the generalised spectrum of x(t) shown in Figure 8. This generalised

spectrum can then be bandpass filtered to recover the generalised spectrum of either d(t) or

n(t), and the inverse transform can be taken to obtain the time–domain representations of the

signals; this is shown in Figure 9. Since perfect separation is possible in this case, the estimate

identically equals the actual desired signal.

In simulations, where the desired signal d(t) is available, the error between the actual signal,
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(a)Time series for a(t) and b(t).
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(b)The Fourier transforms of a(t) and b(t).

Fig. 6. The unknown stochastic modulating signals a(t), b(t). The sampling frequency, fs = 22.050 kHz,

and they are bandlimited to 5 kHz, as emphasised in Figure 6(b).
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(a)Time series for d(t) and n(t).
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(b)The Fourier transforms of d(t) and n(t).

Fig. 7. The desired, d(t), and noise, n(t), signals resulting from multiplying the signals in Figure 6(a)

by the chirp signals of Figure 6. The Fourier transforms of d(t) and n(t) are overlapping, and so

conventionally, would be considered inseparable.

and the estimate obtained in equation (40), can be evaluated as E

{

d̂ − d
}

. A number of

different realisations were used for the modulating signals d(t) and n(t), and the expected error

was extremely small ≈ 10−8; this is a result of numerical accuracy. Furthermore, the noise gain

of the filter matrix A is around 35, and thus any parameter errors due to noise increase linearly

as a function of the variance of the input noise, as discussed in §VI-D. This has been confirmed

by experimentation, although the results are trivial and ommitted here.
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Fig. 8. Top: The Fourier transform of the observed signal x(t) = d(t) + n(t), ∀t ∈ T for the resulting

signals in Figure 7(a); Bottom: The Generalised transform of x(t).
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Fig. 9. The Generalised Spectra of d(t) and n(t), obtained by bandpass filtering the Generalised Spectrum

of x(t) as shown in Figure 8 with pass-bands {0, 2fc − 1} and {2fc, 4fc − 1} respectively.

B. Prior Knowledge and Parameter Sensitivity

The prior knowledge needed to separate the signals includes:

1. requiring d(t) and n(t) are of the form equation (43) with hd(t) and hn(t) given by equa-

tion (45);

2. knowing a(t) and b(t) must be known to be bandlimited to fc;

3. ensuring fs ≥ 4fc, f and τ in equation (45) must all be known.

These parameters must somehow be estimated from the observed signal and, although this is a

non-trivial problem, for the purpose of signal separation it is reasonable to assume that these
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Fig. 10. The mean squared error between the actual desired signal, d, and the estimated desired signal,

d̂, for the example in §VII-A.

few parameters are known a priori. These can be obtained, for example, by modelling the

unknown modulating signals a(t) and b(t) parametrically, and estimating all the parameters

for the unknown signals d(t) , hd(t) a(t) and n(t) = hn(t) b(t) using, for example, Bayesian

methods. The parameter estimates for hd(t) and hn(t) can then be used to create the ideal-filer

in Algorithm 1, and all signals in this class can be separated without any need to place a model

on the unknown modulating signals.

For the example discussed in §VII-A, consider the case where an error is made in the estimate

of hd(t) and hn(t), such that

hest
d (t) = hd(t) + σt

ww(t)

hest
n (t) = hn(t) + σt

wŵ(t)
(46)

In this case, suppose the kernel-matrix and ideal-filer matrix of equations (37) and (39), respec-

tively, are evaluated. This, naturally, will generate errors in the estimate of the desired signal,

d(t), since the noise signal, n(t), no longer lies in the null-space of the matrix A. Furthermore,

d(t) is no longer an eigenvector of the matrix A. Figure 10 shows the mean squared error between

the actual desired signal, d, and the estimated desired signal, d̂, for the example in §VII-A. This

log-log plot indicates that the performance of the ideal filter falls off dramatically as the signal-

to-noise ratio (SNR) decreased. This is problematic practically, and future research is needed to

investigate methods for compensating errors in the estimate of the modulating signals, hd(t) and

hn(t).
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Fig. 11. Fourier spectra of hd(t), hn(t); fs = 22.050 kHz.

C. Separation of Gaussian-Chirp Modulated Signals

As a second example, the chirp in §VII-A is modified by multiplying equation (45) by a

Gaussian. Hence, hd(t) and hn(t), are given by:

hd(t) = exp

{

−
(t − τ̂d)

2

σ2
d

}

cos

[

2πfi

t

fs

(

1 +
1

τd

ff − fi

fi

t

fs

)]

hn(t) = exp

{

−
(t − τ̂n)2

σ2
n

}

cos

[

2πf ′
i

t

fs

(

1 +
1

τn

f ′
f − f ′

i

f ′
i

t

fs

)]























t ∈ T (47)

Using the same parameter values for {fi, f ′
i , ff , f ′

f , τd, τn} as in the previous section, and τ̂d =

τ̂n = T
2 , and σd = σn = 1

20
√

5
, the modulated signals hd(t), hn(t) are shown in Figure 11. The

ideal filter matrix is again calculated using Algorithm 1, and as the kernel matrix in (37) has

full rank, the signals are separable. The impulse response of the resulting ideal filter is shown in

Figure 12.

VIII. Conclusions

Nonstationarity is useful in applications where the mixture of two or more signals is observed

and, at each time instance, there is only a single observation of the mixture in the time do-

main. Separation of the signals has important applications where background noises must be

removed in, for example, mobile telephones, hearing aids, conference telephony, forensic science,

restoration of black box recordings, speech recoginition, and biomedical data analysis. Signal

separation with one observation sensor can only be achieved by exploiting prior knowledge of the

signal structure. Using the assumption that signal separation is possible using the Wiener-Hopf
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Fig. 12. The response of the ideal filter which recovers d(t) for the Gaussian-chirp modulated case.

filter, an intuitive solution to the Wiener-Hopf filter equations is obtained, and relies on the

factorisation of the ACFs into generalised power spectra. The solution to the Wiener-Hopf filter

equations leads naturally to a criterion for signal separation with perfect precision, and is a natu-

ral extension to the condition for separating stationary signals. This paper has also introduced a

signal separation technique by concatenating the domains on which two signal classes can be rep-

resented on with a finite number of basis functions. The technique has been specifically applied

to uniformly modulated signals, and an example has been discussed of separating chirp signals

embedded in multiplicative noise. The known modulated signals can be obtained, for example,

by modelling the unknown modulating signals parametrically, and estimating all the parameters

for the desired and noise signals using, for example, Bayesian methods. The parameter estimates

for the “known” modulated signals can then be used to construct the ideal-filer, and all signals

in this class can be separated without any need to place a model on the unknown modulating

signals.

Appendix

This section contains a proof of sufficiency of Theorem 7.

Proof: Consider taking the general spectral transform of the Wiener-Hopf filter equa-

tion (4a) using equation (10a) in Definition 3:

Pdx(λt, λτ ) =

∫∫∫

T T T

h(t, α)Rxx (α, τ) K(t, λt)K∗(τ, λτ ) dα dt dτ
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substituting equation (14a) gives (∀λt, λτ ∈ Λ),

Pdx(λt, λτ ) =

∫∫∫

T T T

∫∫

ΛΛ

H(λ1, λ2)Rxx (α, τ) k(λ1, t)

× K(α, λ2)K(t, λt)K∗(τ, λτ ) dλ1 dλ2 dα dt dτ

and rearranging the integral w. r. t. t gives:

Pdx(λt, λτ ) =

∫∫∫∫

T T ΛΛ

H(λ1, λ2)Rxx (α, τ) K(α, λ2)

× K∗(τ, λτ )

∫

T

k(λ1, t)K(t, λt) dt dλ1 dλ2 dα dτ

Thus, simplifying using equation (6b), the sifting property, and the definition for the spectral

decomposition, yields:

Pdx(λt, λτ ) =

∫

Λ
H(λt, λ)Pxx(λ, λτ ) dλ, ∀(λt, λτ ) ∈ Λ2 (48a)

Finally, assumming equation (25a) is the solution of the Wiener-Hopf equations, then equa-

tion (48a) may be written in the form:

Pdx(λt, λτ ) =

∫

Λd

δ(λt − λ)Pxx(λ, λτ ) dλ

+

∫

Λ0

H0(λt, λ)Pxx(λ, λτ ) dλ

(48b)

Noting that Λd ⊕ Λn = {∅}, Λd ⊕ Λ0 = {∅} then, using the sifting property, the first term in

equation (48b) is equivalent to Pxx(λt, λτ ) if λt ∈ Λd, and zero otherwise. Moreoever, if λt ∈ Λd

then, since H0(λ1, λ2) = 0 if (λ1, λ2) /∈ Λ2
0, the second term is zero. However, if λt ∈ Λ0, the first

term is zero, while the second term is nonzero. Hence, using the relationships in Definition 3 and

noting Pdx(λt, λτ ) = Pdd(λt, λτ ) + Pdn(λt, λτ ), it follows, after some slight rearrangement, that:

Pdd(λt, λτ ) =


























Pxx(λt, λτ ) ≡ Pdd(λt, λτ ) (λt, λτ ) ∈ Λ2
d

∫

Λ0

H0(λt, λ)Pxx(λ, λτ ) dλ −Pdn(λt, λτ ) (λt, λτ ) ∈ Λ2
0

0 elsewhere

(48c)

where it has been noted that if λt /∈ {Λ0 ∩ Λd}, then Pdx(λt, λτ ) = 0 ⇒ Pdd(λt, λτ ) =

−Pdn(λt, λτ ) = 0 since d(t) and n(t) only have spectral components which overlap in the re-
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gion Λ0. This proves the first part of the theorem. Since d(t) is a real process, the mean squared

error from (4b) may be written as:

σ2(t) ≡ Rdd (t, t) −

∫

T
h(t, α)Rdx (α, t) dα (49)

Writing equation (24a) in the expanded form

Rdd (t, τ) =

∫∫

ΛdΛd

Pdd(λt, λτ ) k(λt, t) k∗(λτ , τ) dλt dλτ

+

∫∫

Λ0Λ0

Pdd(λt, λτ ) k(λt, t) k∗(λτ , τ) dλt dλτ

and substituting this and the expanded expression in (25c) into (4b), gives, after the use of (6b)

and (24c), the fact that Λd ∩ Λ0 = {∅}, and considerable rearrangement, the desired expression

in (25d). Further details are given in [2].
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