11,854 research outputs found

    Hybrid Multicasting Using Automatic Multicast Tunnels (AMT)

    Get PDF
    Native Multicast plays an important role in distributing and managing delivery of some of the most popular Internet applications, such as IPTV and media delivery. However, due to patchy support and the existence of multiple approaches for Native Multicast, the support for Native Multicast is fragmented into isolated areas termed Multicast Islands. This renders Native Multicast unfit to be used as an Internet wide application. Instead, Application Layer Multicast, which does not have such network requirements but is more expensive in terms of bandwidth and overhead, can be used to connect the native multicast islands. This thesis proposes Opportunistic Native Multicast (ONM) which employs Application LayerMulticast (ALM), on top of a DHT-based P2P overlay network, and AutomaticMulticast Tunnelling (AMT) to connect these islands. ALM will be used for discovery and initiating the AMT tunnels. The tunnels will encapsulate the traffic going between islands' Primary Nodes (PNs). AMT was used for its added benefits such as security and being better at traffic shaping and Quality Of Service (QoS). While different approaches for connecting multicast islands exists, the system proposed in the thesis was designed with the following characteristics in mind: scalability, availability, interoperability, self-adaptation and efficiency. Importantly, by utilising AMT tunnels, this approach has unique properties that improve network security and management

    Mapping Child Well-Being in Duval County, FL

    Get PDF
    Analyzes the distribution of neighborhood, education, and health/environmental opportunity; impact on health and education outcomes; demographics of those in Children's Commission programs; and marginalized neighborhoods' conditions. Outlines strategies

    Revisiting Resource Pooling: The Case for In-Network Resource Sharing.

    Get PDF
    We question the widely adopted view of in-network caches acting as temporary storage for the most popular content in Information-Centric Networks (ICN). Instead, we propose that in-network storage is used as a place of temporary custody for incoming content in a store and forward manner. Given this functionality of in-network storage, senders push content into the network in an open-loop manner to take advantage of underutilised links. When content hits the bottleneck link it gets re-routed through alternative uncongested paths. If alternative paths do not exist, incoming content is temporarily stored in in-network caches, while the system enters a closed-loop, back-pressure mode of operation to avoid congestive collapse. Our proposal follows in spirit the resource pooling principle, which, however, is restricted to end-to-end resources and paths. We extend this principle to also take advantage of in-network resources, in terms of multiplicity of available sub-paths (as compared to multihomed users only) and in-network cache space. We call the proposed principle In-Network Resource Pooling Principle (INRPP). Using the INRPP, congestion, or increased contention over a link, is dealt with locally in a hop-by-hop manner, instead of end-to-end. INRPP utilises resources throughout the network more efficiently and opens up new directions for research in the multipath routing and congestion control areas

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work
    corecore