34 research outputs found

    The Combined Use of Optical and SAR Data for Large Area Impervious Surface Mapping

    Get PDF
    One of the megatrends marking our societies today is the rapid growth of urban agglomerations which is accompanied by a continuous increase of impervious surface (IS) cover. In light of this, accurate measurement of urban IS cover as an indicator for both, urban growth and environmental quality is essential for a wide range of urban ecosystems studies. The aim of this work is to present an approach based on both optical and SAR data in order to quantify urban impervious surface as a continuous variable on regional scales. The method starts with the identification of relevant areas by a semi automated detection of settlement areas on the basis of single-polarized TerraSAR-X data. Thereby the distinct texture and the high density of dihedral corner reflectors prevailing in build-up areas are utilized to automatically delineate settlement areas by the use of an object-based image classification method. The settlement footprints then serve as reference area for the impervious surface estimation based on a Support Vector Regression (SVR) model which relates percent IS to spectral reflectance values. The training procedure is based on IS values derived from high resolution QuickBird data. The developed method is applied to SPOT HRG data from 2005 and 2009 covering almost the whole are of Can Tho Province in the Mekong Delta, Vietnam. In addition, a change detection analysis was applied in order to test the suitability of the modelled IS results for the automated detection of constructional developments within urban environments. Overall accuracies between 84 % and 91% for the derived settlement footprints and absolute mean errors below 15% for the predicted versus training percent IS values prove the suitability of the approach for an area-wide mapping of impervious surfaces thereby exclusively focusing on settlement areas on the basis of remotely sensed image data

    Fusion of Landsat 8 OLI and Sentinel-2 MSI data

    Get PDF
    Sentinel-2 is a wide-swath and fine spatial resolution satellite imaging mission designed for data continuity and enhancement of the Landsat and other missions. The Sentinel-2 data are freely available at the global scale, and have similar wavelengths and the same geographic coordinate system as the Landsat data, which provides an excellent opportunity to fuse these two types of satellite sensor data together. In this paper, a new approach is presented for the fusion of Landsat 8 Operational Land Imager and Sentinel-2 Multispectral Imager data to coordinate their spatial resolutions for continuous global monitoring. The 30 m spatial resolution Landsat 8 bands are downscaled to 10 m using available 10 m Sentinel-2 bands. To account for the land-cover/land-use (LCLU) changes that may have occurred between the Landsat 8 and Sentinel-2 images, the Landsat 8 panchromatic (PAN) band was also incorporated in the fusion process. The experimental results showed that the proposed approach is effective for fusing Landsat 8 with Sentinel-2 data, and the use of the PAN band can decrease the errors introduced by LCLU changes. By fusion of Landsat 8 and Sentinel-2 data, more frequent observations can be produced for continuous monitoring (this is particularly valuable for areas that can be covered easily by clouds, thereby, contaminating some Landsat or Sentinel-2 observations), and the observations are at a consistent fine spatial resolution of 10 m. The products have great potential for timely monitoring of rapid changes

    Image fusion for spatial enhancement of hyperspectral image via pixel group based non-local sparse representation

    Get PDF
    Restricted by technical and budget constraints, hyperspectral images (HSIs) are usually obtained with low spatial resolution. In order to improve the spatial resolution of a given hyperspectral image, a new spatial and spectral image fusion approach via pixel group based non-local sparse representation is proposed, which exploits the spectral sparsity and spectral non-local self-similarity of the hyperspectral image. The proposed approach fuses the hyperspectral image with a high-spatial-resolution multispectral image of the same scene to obtain a hyperspectral image with high spatial and spectral resolutions. The input hyperspectral image is used to train the spectral dictionary, while the sparse codes of the desired HSI are estimated by jointly encoding the similar pixels in each pixel group extracted from the high-spatial-resolution multispectral image. To improve the accuracy of the pixel group based non-local sparse representation, the similar pixels in a pixel group are selected by utilizing both the spectral and spatial information. The performance of the proposed approach is tested on two remote sensing image datasets. Experimental results suggest that the proposed method outperforms a number of sparse representation based fusion techniques, and can preserve the spectral information while recovering the spatial details under large magnification factors

    Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets

    Get PDF
    Recognizing the imperative need for biodiversity protection, the Convention on Biological Diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. However, most relevant studies constitute individual research efforts, rarely related with the extraction of widely adopted CBD biodiversity indicators. Furthermore, systematic operational use of remote sensing data by managing authorities has still been limited. In this study, the Aichi targets and the related CBD indicators whose monitoring can be facilitated by remote sensing are identified. For each headline indicator a number of recent remote sensing approaches able for the extraction of related properties are reviewed. Methods cover a wide range of fields, including: habitat extent and condition monitoring; species distribution; pressures from unsustainable management, pollution and climate change; ecosystem service monitoring; and conservation status assessment of protected areas. The advantages and limitations of different remote sensing data and algorithms are discussed. Sorting of the methods based on their reported accuracies is attempted, when possible. The extensive literature survey aims at reviewing highly performing methods that can be used for large-area, effective, and timely biodiversity assessment, to encourage the more systematic use of remote sensing solutions in monitoring progress towards the Aichi targets, and to decrease the gaps between the remote sensing and management communities

    Cloud removal from optical remote sensing images

    Full text link
    Optical remote sensing images used for Earth surface observations are constantly contaminated by cloud cover. Clouds dynamically affect the applications of optical data and increase the difficulty of image analysis. Therefore, cloud is considered as one of the sources of noise in optical image data, and its detection and removal need to be operated as a pre-processing step in most remote sensing image processing applications. This thesis investigates the current cloud detection and removal algorithms and develops three new cloud removal methods to improve the accuracy of the results. A thin cloud removal method based on signal transmission principles and spectral mixture analysis (ST-SMA) for pixel correction is developed in the first contribution. This method considers not only the additive reflectance from the clouds but also the energy absorption when solar radiation passes through them. Data correction is achieved by subtracting the product of the cloud endmember signature and the cloud abundance and rescaling according to the cloud thickness. The proposed method has no requirement for meteorological data and does not rely on reference images. The experimental results indicate that the proposed approach is able to perform effective removal of thin clouds in different scenarios. In the second study, an effective cloud removal method is proposed by taking advantage of the noise-adjusted principal components transform (CR-NAPCT). It is found that the signal-to-noise ratio (S/N) of cloud data is higher than data without cloud contamination, when spatial correlation is considered and are shown in the first NAPCT component (NAPC1) in the NAPCT data. An inverse transformation with a modified first component is then applied to generate the cloud free image. The effectiveness of the proposed method is assessed by performing experiments on simulated and real data to compare the quantitative and qualitative performance of the proposed approach. The third study of this thesis deals with both cloud and cloud shadow problems with the aid of an auxiliary image in a clear sky condition. A new cloud removal approach called multitemporal dictionary learning (MDL) is proposed. Dictionaries of the cloudy areas (target data) and the cloud free areas (reference data) are learned separately in the spectral domain. An online dictionary learning method is then applied to obtain the two dictionaries in this method. The removal process is conducted by using the coefficients from the reference image and the dictionary learned from the target image. This method is able to recover the data contaminated by thin and thick clouds or cloud shadows. The experimental results show that the MDL method is effective from both quantitative and qualitative viewpoints

    Crop monitoring and yield estimation using polarimetric SAR and optical satellite data in southwestern Ontario

    Get PDF
    Optical satellite data have been proven as an efficient source to extract crop information and monitor crop growth conditions over large areas. In local- to subfield-scale crop monitoring studies, both high spatial resolution and high temporal resolution of the image data are important. However, the acquisition of optical data is limited by the constant contamination of clouds in cloudy areas. This thesis explores the potential of polarimetric Synthetic Aperture Radar (SAR) satellite data and the spatio-temporal data fusion approach in crop monitoring and yield estimation applications in southwestern Ontario. Firstly, the sensitivity of 16 parameters derived from C-band Radarsat-2 polarimetric SAR data to crop height and fractional vegetation cover (FVC) was investigated. The results show that the SAR backscatters are affected by many factors unrelated to the crop canopy such as the incidence angle and the soil background and the degree of sensitivity varies with the crop types, growing stages, and the polarimetric SAR parameters. Secondly, the Minimum Noise Fraction (MNF) transformation, for the first time, was applied to multitemporal Radarsat-2 polarimetric SAR data in cropland area mapping based on the random forest classifier. An overall classification accuracy of 95.89% was achieved using the MNF transformation of the multi-temporal coherency matrix acquired from July to November. Then, a spatio-temporal data fusion method was developed to generate Normalized Difference Vegetation Index (NDVI) time series with both high spatial and high temporal resolution in heterogeneous regions using Landsat and MODIS imagery. The proposed method outperforms two other widely used methods. Finally, an improved crop phenology detection method was proposed, and the phenology information was then forced into the Simple Algorithm for Yield Estimation (SAFY) model to estimate crop biomass and yield. Compared with the SAFY model without forcing the remotely sensed phenology and a simple light use efficiency (LUE) model, the SAFY incorporating the remotely sensed phenology can improve the accuracy of biomass estimation by about 4% in relative Root Mean Square Error (RRMSE). The studies in this thesis improve the ability to monitor crop growth status and production at subfield scale

    A methodology to produce geographical information for land planning using very-high resolution images

    Get PDF
    Actualmente, os municípios são obrigados a produzir, no âmbito da elaboração dos instrumentos de gestão territorial, cartografia homologada pela autoridade nacional. O Plano Director Municipal (PDM) tem um período de vigência de 10 anos. Porém, no que diz respeito à cartografia para estes planos, principalmente em municípios onde a pressão urbanística é elevada, esta periodicidade não é compatível com a dinâmica de alteração de uso do solo. Emerge assim, a necessidade de um processo de produção mais eficaz, que permita a obtenção de uma nova cartografia de base e temática mais frequentemente. Em Portugal recorre-se à fotografia aérea como informação de base para a produção de cartografia de grande escala. Por um lado, embora este suporte de informação resulte em mapas bastante rigorosos e detalhados, a sua produção têm custos muito elevados e consomem muito tempo. As imagens de satélite de muito alta-resolução espacial podem constituir uma alternativa, mas sem substituir as fotografias aéreas na produção de cartografia temática, a grande escala. O tema da tese trata assim da satisfação das necessidades municipais em informação geográfica actualizada. Para melhor conhecer o valor e utilidade desta informação, realizou-se um inquérito aos municípios Portugueses. Este passo foi essencial para avaliar a pertinência e a utilidade da introdução de imagens de satélite de muito alta-resolução espacial na cadeia de procedimentos de actualização de alguns temas, quer na cartografia de base quer na cartografia temática. A abordagem proposta para solução do problema identificado baseia-se no uso de imagens de satélite e outros dados digitais em ambiente de Sistemas de Informação Geográfica. A experimentação teve como objectivo a extracção automática de elementos de interesse municipal a partir de imagens de muito alta-resolução espacial (fotografias aéreas ortorectificadas, imagem QuickBird, e imagem IKONOS), bem como de dados altimétricos (dados LiDAR). Avaliaram-se as potencialidades da informação geográfica extraídas das imagens para fins cartográficos e analíticos. Desenvolveram-se quatro casos de estudo que reflectem diferentes usos para os dados geográficos a nível municipal, e que traduzem aplicações com exigências diferentes. No primeiro caso de estudo, propõe-se uma metodologia para actualização periódica de cartografia a grande escala, que faz uso de fotografias aéreas vi ortorectificadas na área da Alta de Lisboa. Esta é uma aplicação quantitativa onde as qualidades posicionais e geométricas dos elementos extraídos são mais exigentes. No segundo caso de estudo, criou-se um sistema de alarme para áreas potencialmente alteradas, com recurso a uma imagem QuickBird e dados LiDAR, no Bairro da Madre de Deus, com objectivo de auxiliar a actualização de cartografia de grande escala. No terceiro caso de estudo avaliou-se o potencial solar de topos de edifícios nas Avenidas Novas, com recurso a dados LiDAR. No quarto caso de estudo, propõe-se uma série de indicadores municipais de monitorização territorial, obtidos pelo processamento de uma imagem IKONOS que cobre toda a área do concelho de Lisboa. Esta é uma aplicação com fins analíticos onde a qualidade temática da extracção é mais relevante.Currently, the Portuguese municipalities are required to produce homologated cartography, under the Territorial Management Instruments framework. The Municipal Master Plan (PDM) has to be revised every 10 years, as well as the topographic and thematic maps that describe the municipal territory. However, this period is inadequate for representing counties where urban pressure is high, and where the changes in the land use are very dynamic. Consequently, emerges the need for a more efficient mapping process, allowing obtaining recent geographic information more often. Several countries, including Portugal, continue to use aerial photography for large-scale mapping. Although this data enables highly accurate maps, its acquisition and visual interpretation are very costly and time consuming. Very-High Resolution (VHR) satellite imagery can be an alternative data source, without replacing the aerial images, for producing large-scale thematic cartography. The focus of the thesis is the demand for updated geographic information in the land planning process. To better understand the value and usefulness of this information, a survey of all Portuguese municipalities was carried out. This step was essential for assessing the relevance and usefulness of the introduction of VHR satellite imagery in the chain of procedures for updating land information. The proposed methodology is based on the use of VHR satellite imagery, and other digital data, in a Geographic Information Systems (GIS) environment. Different algorithms for feature extraction that take into account the variation in texture, color and shape of objects in the image, were tested. The trials aimed for automatic extraction of features of municipal interest, based on aerial and satellite high-resolution (orthophotos, QuickBird and IKONOS imagery) as well as elevation data (altimetric information and LiDAR data). To evaluate the potential of geographic information extracted from VHR images, two areas of application were identified: mapping and analytical purposes. Four case studies that reflect different uses of geographic data at the municipal level, with different accuracy requirements, were considered. The first case study presents a methodology for periodic updating of large-scale maps based on orthophotos, in the area of Alta de Lisboa. This is a situation where the positional and geometric accuracy of the extracted information are more demanding, since technical mapping standards must be complied. In the second case study, an alarm system that indicates the location of potential changes in building areas, using a QuickBird image and LiDAR data, was developed for the area of Bairro da Madre de Deus. The goal of the system is to assist the updating of large scale mapping, providing a layer that can be used by the municipal technicians as the basis for manual editing. In the third case study, the analysis of the most suitable roof-tops for installing solar systems, using LiDAR data, was performed in the area of Avenidas Novas. A set of urban environment indicators obtained from VHR imagery is presented. The concept is demonstrated for the entire city of Lisbon, through IKONOS imagery processing. In this analytical application, the positional quality issue of extraction is less relevant.GEOSAT – Methodologies to extract large scale GEOgraphical information from very high resolution SATellite images (PTDC/GEO/64826/2006), e-GEO – Centro de Estudos de Geografia e Planeamento Regional, da Faculdade de Ciências Sociais e Humanas, no quadro do Grupo de Investigação Modelação Geográfica, Cidades e Ordenamento do Territóri

    Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    The application of remote sensing to identify and measure sealed soil and vegetated surfaces in urban environments

    Get PDF
    Soil is an important non-renewable source. Its protection and allocation is critical to sustainable development goals. Urban development presents an important drive of soil loss due to sealing over by buildings, pavements and transport infrastructure. Monitoring sealed soil surfaces in urban environments is gaining increasing interest not only for scientific research studies but also for local planning and national authorities. The aim of this research was to investigate the extent to which automated classification methods can detect soil sealing in UK urban environments, by remote sensing. The objectives include development of object-based classification methods, using two types of earth observation data, and evaluation by comparison with manual aerial photo interpretation techniques. Four sample areas within the city of Cambridge were used for the development of an object-based classification model. The acquired data was a true-colour aerial photography (0.125 m resolution) and a QuickBird satellite imagery (2.8 multi-spectral resolution). The classification scheme included the following land cover classes: sealed surfaces, vegetated surfaces, trees, bare soil and rail tracks. Shadowed areas were also identified as an initial class and attempts were made to reclassify them into the actual land cover type. The accuracy of the thematic maps was determined by comparison with polygons derived from manual air-photo interpretation; the average overall accuracy was 84%. The creation of simple binary maps of sealed vs. vegetated surfaces resulted in a statistically significant accuracy increase to 92%. The integration of ancillary data (OS MasterMap) into the object-based model did not improve the performance of the model (overall accuracy of 91%). The use of satellite data in the object-based model gave an overall accuracy of 80%, a 7% decrease compared to the aerial photography. Future investigation will explore whether the integration of elevation data will aid to discriminate features such as trees from other vegetation types. The use of colour infrared aerial photography should also be tested. Finally, the application of the object- based classification model into a different study area would test its transferability
    corecore