359 research outputs found

    RobCaps: Evaluating the Robustness of Capsule Networks against Affine Transformations and Adversarial Attacks

    Full text link
    Capsule Networks (CapsNets) are able to hierarchically preserve the pose relationships between multiple objects for image classification tasks. Other than achieving high accuracy, another relevant factor in deploying CapsNets in safety-critical applications is the robustness against input transformations and malicious adversarial attacks. In this paper, we systematically analyze and evaluate different factors affecting the robustness of CapsNets, compared to traditional Convolutional Neural Networks (CNNs). Towards a comprehensive comparison, we test two CapsNet models and two CNN models on the MNIST, GTSRB, and CIFAR10 datasets, as well as on the affine-transformed versions of such datasets. With a thorough analysis, we show which properties of these architectures better contribute to increasing the robustness and their limitations. Overall, CapsNets achieve better robustness against adversarial examples and affine transformations, compared to a traditional CNN with a similar number of parameters. Similar conclusions have been derived for deeper versions of CapsNets and CNNs. Moreover, our results unleash a key finding that the dynamic routing does not contribute much to improving the CapsNets' robustness. Indeed, the main generalization contribution is due to the hierarchical feature learning through capsules.Comment: To appear at the 2023 International Joint Conference on Neural Networks (IJCNN), Queensland, Australia, June 202

    SeVuc: A study on the Security Vulnerabilities of Capsule Networks against adversarial attacks

    Get PDF
    Capsule Networks (CapsNets) preserve the hierarchical spatial relationships between objects, and thereby bear the potential to surpass the performance of traditional Convolutional Neural Networks (CNNs) in performing tasks like image classification. This makes CapsNets suitable for the smart cyber-physical systems (CPS), where a large amount of training data may not be available. A large body of work has explored adversarial examples for CNNs, but their effectiveness on CapsNets has not yet been studied systematically. In our work, we perform an analysis to study the vulnerabilities in CapsNets to adversarial attacks. These perturbations, added to the test inputs, are small and imperceptible to humans, but can fool the network to mispredict. We propose a greedy algorithm to automatically generate imperceptible adversarial examples in a black-box attack scenario. We show that this kind of attacks, when applied to the German Traffic Sign Recognition Benchmark and CIFAR10 datasets, mislead CapsNets in making a correct classification, which can be catastrophic for smart CPS, like autonomous vehicles. Moreover, we apply the same kind of adversarial attacks to a 5-layer CNN (LeNet), to a 9-layer CNN (VGGNet), and to a 20-layer CNN (ResNet), and analyze the outcome, compared to the CapsNets, to study their different behaviors under the adversarial attacks

    TextCaps : Handwritten Character Recognition with Very Small Datasets

    Full text link
    Many localized languages struggle to reap the benefits of recent advancements in character recognition systems due to the lack of substantial amount of labeled training data. This is due to the difficulty in generating large amounts of labeled data for such languages and inability of deep learning techniques to properly learn from small number of training samples. We solve this problem by introducing a technique of generating new training samples from the existing samples, with realistic augmentations which reflect actual variations that are present in human hand writing, by adding random controlled noise to their corresponding instantiation parameters. Our results with a mere 200 training samples per class surpass existing character recognition results in the EMNIST-letter dataset while achieving the existing results in the three datasets: EMNIST-balanced, EMNIST-digits, and MNIST. We also develop a strategy to effectively use a combination of loss functions to improve reconstructions. Our system is useful in character recognition for localized languages that lack much labeled training data and even in other related more general contexts such as object recognition

    An Evasion Attack against Stacked Capsule Autoencoder

    Full text link
    Capsule network is a type of neural network that uses the spatial relationship between features to classify images. By capturing the poses and relative positions between features, its ability to recognize affine transformation is improved, and it surpasses traditional convolutional neural networks (CNNs) when handling translation, rotation and scaling. The Stacked Capsule Autoencoder (SCAE) is the state-of-the-art capsule network. The SCAE encodes an image as capsules, each of which contains poses of features and their correlations. The encoded contents are then input into the downstream classifier to predict the categories of the images. Existing research mainly focuses on the security of capsule networks with dynamic routing or EM routing, and little attention has been given to the security and robustness of the SCAE. In this paper, we propose an evasion attack against the SCAE. After a perturbation is generated based on the output of the object capsules in the model, it is added to an image to reduce the contribution of the object capsules related to the original category of the image so that the perturbed image will be misclassified. We evaluate the attack using an image classification experiment, and the experimental results indicate that the attack can achieve high success rates and stealthiness. It confirms that the SCAE has a security vulnerability whereby it is possible to craft adversarial samples without changing the original structure of the image to fool the classifiers. We hope that our work will make the community aware of the threat of this attack and raise the attention given to the SCAE's security

    Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey

    Full text link
    While Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings, they are affected by some crucial weaknesses. On the one hand, DNNs depend on exploiting a vast amount of training data, whose labeling process is time-consuming and expensive. On the other hand, DNNs are often treated as black box systems, which complicates their evaluation and validation. Both problems can be mitigated by incorporating prior knowledge into the DNN. One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations of the problem to solve. This promises an increased data-efficiency and filter responses that are interpretable more easily. In this survey, we try to give a concise overview about different approaches to incorporate geometrical prior knowledge into DNNs. Additionally, we try to connect those methods to the field of 3D object detection for autonomous driving, where we expect promising results applying those methods.Comment: Survey Pape

    Hybrid Gromov-Wasserstein Embedding for Capsule Learning

    Full text link
    Capsule networks (CapsNets) aim to parse images into a hierarchy of objects, parts, and their relations using a two-step process involving part-whole transformation and hierarchical component routing. However, this hierarchical relationship modeling is computationally expensive, which has limited the wider use of CapsNet despite its potential advantages. The current state of CapsNet models primarily focuses on comparing their performance with capsule baselines, falling short of achieving the same level of proficiency as deep CNN variants in intricate tasks. To address this limitation, we present an efficient approach for learning capsules that surpasses canonical baseline models and even demonstrates superior performance compared to high-performing convolution models. Our contribution can be outlined in two aspects: firstly, we introduce a group of subcapsules onto which an input vector is projected. Subsequently, we present the Hybrid Gromov-Wasserstein framework, which initially quantifies the dissimilarity between the input and the components modeled by the subcapsules, followed by determining their alignment degree through optimal transport. This innovative mechanism capitalizes on new insights into defining alignment between the input and subcapsules, based on the similarity of their respective component distributions. This approach enhances CapsNets' capacity to learn from intricate, high-dimensional data while retaining their interpretability and hierarchical structure. Our proposed model offers two distinct advantages: (i) its lightweight nature facilitates the application of capsules to more intricate vision tasks, including object detection; (ii) it outperforms baseline approaches in these demanding tasks
    • …
    corecore