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A B S T R A C T

Capsule Networks (CapsNets) preserve the hierarchical spatial relationships between objects, and thereby bear
the potential to surpass the performance of traditional Convolutional Neural Networks (CNNs) in performing
tasks like image classification. This makes CapsNets suitable for the smart cyber–physical systems (CPS), where
a large amount of training data may not be available. A large body of work has explored adversarial examples
for CNNs, but their effectiveness on CapsNets has not yet been studied systematically. In our work, we perform
an analysis to study the vulnerabilities in CapsNets to adversarial attacks. These perturbations, added to the test
inputs, are small and imperceptible to humans, but can fool the network to mispredict. We propose a greedy
algorithm to automatically generate imperceptible adversarial examples in a black-box attack scenario. We
show that this kind of attacks, when applied to the German Traffic Sign Recognition Benchmark and CIFAR10
datasets, mislead CapsNets in making a correct classification, which can be catastrophic for smart CPS, like
autonomous vehicles. Moreover, we apply the same kind of adversarial attacks to a 5-layer CNN (LeNet), to a
9-layer CNN (VGGNet), and to a 20-layer CNN (ResNet), and analyze the outcome, compared to the CapsNets,
to study their different behaviors under the adversarial attacks.
. Introduction

Convolutional Neural Networks (CNNs) have shown great improve-
ents and successes in many Machine Learning (ML) applications,

.g., object detection, face recognition, image classification [1], which
orm a key component of today’s smart Cyber–Physical Systems (CPS)
nd Internet of Things (IoT) systems [2]. However, the convolutional
ayers do not preserve spatial hierarchies between the objects, e.g., ori-
ntation, position and scaling. CNNs are specialized to identify and
ecognize the presence of an object as a feature, without perceiving the
patial relationships across multiple features. Concurrently, the Google
rain’s team [3] proposed the CapsNet, an advanced CNN architecture
omposed of so-called capsules, which is based on the dynamic routing,
n iterative algorithm to learn the coupling between capsules. The
ey idea behind the CapsNets is called inverse graphics, i.e., when the
yes analyze an object, the spatial relationships between its parts are
ecoded and matched with the representation of the same object in
ur brain. Similarly, in CapsNets the feature representations are stored
nside the capsules in a vector form, in contrast to the scalar form used
y the neurons in traditional CNNs [4]. Despite the great success in the
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field of image classification, prior works [5] have demonstrated that, in
a similar way as CNNs, the CapsNets are also not immune to adversarial
attacks.

Adversarial examples are small perturbations added to the inputs,
which are generated to fool the network, thereby revealing the corre-
sponding security vulnerabilities [6]. Hence, they can be dangerous in
safety–critical CPS and IoT systems, with applications like Voice Con-
trollable Systems (VCS) [7,8] and image/face/traffic signs recognition
[9,10]. Many works [9,11] have analyzed the impact of adversarial
examples on CNNs, and studied different methodologies to improve
the defense mechanisms. Towards CapsNets, in this paper, we aim to
addressing the following key research questions:

1. Is a CapsNet vulnerable to adversarial examples? If yes, how,
why, and to what extent?

2. How does the CapsNet’s vulnerability to adversarial attacks dif-
fer from that of the traditional CNNs?

To the best of our knowledge, we are the first to study (1) the
vulnerability of the CapsNet to such adversarial attacks for the German
vailable online 30 November 2022
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Fig. 1. Architecture of the CapsNet for the GTSRB dataset.

Traffic Sign Recognition Benchmark (GTSRB) [12], which is crucial for
autonomous vehicle use cases; (2) to automatically generate an attack
image for such CapsNet in a black-box scenario; and (3) to compare the
robustness of the CapsNet with the CNNs with 5 and 9 layers, and the
robustness of the DeepCaps with a 20-layer ResNet, by applying affine
transformations and adversarial attacks.

Our Novel Contributions:

1. We analyze the robustness behavior of the CapsNet, the Deep-
Caps, a 5-layer CNN (LeNet), a 9-layer CNN (VGGNet), and a
20-layer CNN (ResNet), under affine transformations applied
to the input images of the GTSRB and CIFAR10 datasets, and
study their differences (Section 3).

2. We develop a novel algorithm to automatically generate tar-
geted imperceptible and robust adversarial examples
(Section 4).

3. We compare the robustness of the CapsNets with traditional
CNNs, under the adversarial examples generated by our algo-
rithm (Section 5).

In summary, our results show that the CapsNet has comparable
robustness to a much deeper CNN like the VGGNet, while the LeNet is
much more vulnerable to the affine transformations and the adversarial
attacks, while the DeepCaps is more robust than the ResNet. Therefore,
we can make a key step forward for the security of safety–critical
applications by employing deep and complex networks such as the
DeepCaps.

Before proceeding to the technical sections, in Section 2 we present
an overview of the CapsNets and of the adversarial attacks, to a level
of detail necessary to understand the contributions of this paper.

2. Background and related work

2.1. Capsule networks

Capsules were first introduced by Hinton et al. [13]. They are multi-
dimensional entities that can learn the hierarchical information of the
features. Compared to the traditional CNNs, a CapsNet has the capsule
(i.e., a group of neurons) as the basic element, instead of the neu-
ron. State-of-the-art works about CapsNet’s architecture and training
algorithms [3,14] have shown competitive accuracy results for image
classification task, compared to other state-of-the-art classifiers. Kumar
[15] proposed a CapsNet architecture, composed of 3 layers, which
achieved good performance for the GTSRB dataset [12]. Fig. 1 shows
its architecture. Note, between the two consecutive capsule layers
(i.e., Caps1 and Caps2), the dynamic routing algorithm is performed,
which is compute-intensive as it introduces a feedback loop during the
training and inference.

Rajasegaran et al. [16] proposed a deep CapsNet architecture called
DeepCaps, which achieved high accuracy for the CIFAR10 dataset [17].
Its architecture, shown in Fig. 2, presents a first convolutional layer, 15
2-dimensional (2D) convolutional capsule layer, one 3D convolutional
capsule layer, and one class capsule layer. Some layers are connected
to each other through a skip connection, while the dynamic routing
is performed in the 3D convolutional capsule layer and in the class
capsule layer.
2

2.2. Adversarial attacks

Szegedy et al. [18] studied that several ML models are vulnerable
to adversarial examples. Goodfellow et al. [19] explained the problem
observing that ML models misclassify examples that are only slightly dif-
ferent from correctly classified examples drawn from the data distribution.
Considering an input example 𝑥, the adversarial example 𝑥∗ = 𝑥 + 𝜂
is equal to the original one, except for a small perturbation 𝜂. The
goal of the perturbation is to maximize the prediction error, to make
the predicted class 𝐶(𝑥) different from the target one 𝐶(𝑥∗). In recent
years, many methodologies to generate adversarial examples and their
respective defense strategies have been proposed [20–22]. Adversarial
attacks can be categorized according to different attributes, e.g., the
choice of the class, the kind of the perturbation and the knowledge of
the network under attack [10,23]. We summarize these attributes in
Fig. 3. A simple representation of the attack scenario that we consider
throughout this paper is visible in Fig. 4.

An adversarial attack is very efficient if it is imperceptible and robust :
this is the main concept of the analysis conducted by Luo et al. [24]
for traditional CNNs. Their attack modified the pixels in high variance
areas, since the human eyes do not perceive their modifications much.
Moreover, an adversarial example is robust if the gap between the
probabilities of the predicted and the target class is so large that, after
an image transformation (e.g., compression or resizing), the misclassi-
fication still holds. Prior works showed that a CapsNet is vulnerable to
adversarial attacks. Michels et al. [5] analyzed the CapsNet’s accuracy
applying Carlini–Wagner Attack [25], Boundary Attack [26], DeepFool
Attack [27] and Universal Attack [28]. Frosst et al. [29] presented an
efficient technique to detect the crafted images on MNIST, Fashion-
MNIST [30] and SVHN [31] datasets. Qin et al. [32] investigated the
detection adversarial examples on CapsNets with the reconstruction
network, and proposed a successful deflection algorithm [33]. Gu et al.
[34] proposed a novel CapsNet which further improves its robustness
against affine transformations. All the aforementioned works did not
analyze the effect of black-box attacks and affine transformations on
CapsNets and CNNs, which is exactly what we focus on in this paper.

3. Robustness analysis under affine transformations

Before studying the vulnerability of the CapsNets under adversarial
examples, we apply certain affine transformations to the test input
images of the GTSRB and CIFAR10 datasets, and to observe their
effects on our network predictions. We use three different types of
transformations: rotation, shift and zoom. This analysis is important
to understand how affine transformations, which are perceptible yet
plausible in the real world, can or cannot mislead the investigated
networks.

3.1. Experimental setup

For the analysis on the GTSRB dataset, we consider the CapsNet of
Fig. 1, which is composed of a convolutional layer, with kernel 9 × 9,
a convolutional capsule layer, with kernel 5 × 5, and a fully connected
capsule layer. We implement it in TensorFlow, to perform classification
on the GTSRB dataset [15] with an accuracy of 97.6%. This dataset has
images of size 32 × 32 and it is divided into 34,799 training examples
and 12,630 testing examples. Each pixel intensity assumes a value
from 0 to 1. The number of classes is 43. For evaluation purposes, we
compare the CapsNet with a 5-layer CNN (LeNet) [35], trained for 30
epochs, and a 9-layer CNN (VGGNet) [36], trained for 120 epochs. They
are both implemented in TensorFlow and their accuracy with clean test
images are 91.3% and 97.7%, respectively.

For the analysis on the CIFAR10 dataset, we consider the DeepCaps
architecture of Fig. 2, which is composed of 18 layers. We implement it
in TensorFlow, and its classification accuracy on the CIFAR10 dataset
[17] is 91.52%. The CIFAR10 dataset contains 50,000 training images
and 10,000 testing images of size 32 × 32, divided into 10 classes. We
compare it with a 20-layer ResNet [37], which has an accuracy with

clean test images of 91.48%.
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Table 1
Robustness analysis after employing affine transformations to an image of the GTSRB dataset.

CapsNet confidence VGGNet confidence LeNet confidence

Original Stop 0.057 Stop 1.000 Stop 0.999
Zoom 1.5x Road work 0.026 General caution 0.735 Yield 0.574
Zoom 0.8x Stop 0.054 Stop 0.999 Stop 0.989
Shift (2,2) Stop 0.050 Stop 0.999 Stop 0.984
Shift (4,4) Yield 0.037 Yield 0.900 Yield 0.999
Rotate 10◦ Stop 0.056 Stop 0.999 Stop 0.999
Rotate 30◦ Stop 0.032 Stop 0.747 Go straight or left 0.668
Fig. 2. Architecture of the DeepCaps for the CIFAR10 dataset.
Fig. 3. Taxonomy of adversarial examples.
Fig. 4. A black-box adversarial attack, showing the classification for an image
perturbed by an adversarial intruder.

3.2. Robustness under affine transformations on the GTSRB dataset

Table 1 reports some results for affine transformations applied to the
input. The analysis shows that both the CapsNet and the VGGNet can
be fooled by some affine transformations, like zoom or shift. While the
confidence of the CapsNet is lower.1 Moreover, the LeNet, since it has
lower number of layers, compared to the VGGNet, is more vulnerable

1 We noticed that the prediction confidence of the CapsNets are very low,
with a small difference between classes, compared to the CNNs. As reported
in the work of Guo et al. [38], in a deep learning model, based on its
calibration, the probability associated with the predicted class label may not
reflect its ground truth correctness likelihood. Therefore, such a behavior can
3

to this kind of transformations. Since the CapsNet has similar depth
and number of parameters as the LeNet (i.e., much less compared to
the VGGNet), an expected outcome at a first sight would have been
a reduced robustness compared to the VGGNet. However, the CapsNet
can overcome such deficit with capsules and advanced algorithms, such
as the dynamic routing. Indeed, as we can notice in the example of the
image rotated by 30◦, the confidence is lower, but both the CapsNet and
the VGGNet are able to classify correctly, while the LeNet is fooled.

3.3. Robustness under affine transformations on the CIFAR10 dataset

Table 2 shows the results of an image of the CIFAR10 dataset that is
labeled as ‘‘truck’’. The DeepCaps and the ResNet20 correctly classify
the image in its original form, while a certain set of affine transfor-
mations fools both networks. Note that, the ResNet20 is fooled by
the Zoom 1.5× transformation, while the DeepCaps correctly predicts,
despite the lower confidence than for the original image. Hence, the
DeepCaps exhibits higher robustness than the ResNet20 to this kind of
transformations.

be attributed to the fact that CNNs and CapsNets are calibrated in a different
way.



Microprocessors and Microsystems 96 (2023) 104738A. Marchisio et al.

e
a

4

m
n
a
t
a
t
a
p
i

𝑆

d
p
d
s

𝐷

u
t

i
m

𝐺

e
b
a
a
a
t
p
i
e
m

Table 2
Robustness analysis after employing affine transformations to an image of the CIFAR10
dataset.

DeepCaps confidence ResNet20 confidence

Original Truck 0.619 Truck 0.844
Zoom 1.5x Truck 0.528 Automobile 0.515
Zoom 0.8x Truck 0.626 Truck 0.739
Shift (2,2) Truck 0.441 Truck 0.620
Shift (4,4) Ship 0.385 Ship 0.464
Rotate 10◦ Truck 0.716 Truck 0.672
Rotate 30◦ Ship 0.397 Ship 0.530

4. Generation of targeted imperceptible and robust adversarial
examples

An efficient adversarial attack can generate imperceptible and robust
xamples to fool the network. Before describing the details of our
lgorithm, we discuss the importance of these two aspects.

.1. Imperceptibility and robustness

An adversarial example is typically considered imperceptible if the
odifications of the original sample are so small that humans cannot
otice them, or they are hard to be noticed. To create an imperceptible
dversarial example, we need to add the perturbations in the pixels of
he image with the highest standard deviation. In fact, the perturbations
dded in high variance zones are less evident and more difficult to de-
ect with respect to the ones applied in low variance pixels. Considering
n area of 𝑀 ⋅𝑁 pixels x, the standard deviation (𝑆𝐷, Eq. (1)) of the
ixel 𝑥𝑖,𝑗 can be computed as the square root of the variance, where 𝜇
s the average of the 𝑀 ⋅𝑁 pixels:

𝐷(𝑥𝑖,𝑗 ) =

√

∑𝑀
𝑘=1

∑𝑁
𝑙=1(𝑥𝑘,𝑙 − 𝜇)2 − (𝑥𝑖,𝑗 − 𝜇)2

𝑀 ⋅𝑁
(1)

Hence, when the pixel is in a high variance region, its standard
eviation is high and the probability to detect a modification of the
ixel is low. To measure the imperceptibility, it is possible to define the
istance (𝐷, Eq. (2)) between the original sample X and the adversarial
ample X*, where 𝛿𝑖,𝑗 is the perturbation added to the pixel 𝑥𝑖,𝑗 :

(𝑋∗, 𝑋) =
𝑀
∑

𝑖=1

𝑁
∑

𝑗=1

𝛿𝑖,𝑗
𝑆𝐷(𝑥𝑖,𝑗 )

(2)

This value indicates the total perturbation added to all the pixels
nder consideration. We define 𝐷𝑀𝐴𝑋 as the maximum total perturba-
ion tolerated by the human eye. The value of 𝐷𝑀𝐴𝑋 can vary among

different datasets or images, because it depends on the resolution and
the contrast between neighboring pixels.

An adversarial example is typically called robust if the gap function,
.e., the difference between the probability of the target class and the
aximum class probability is maximized:

𝐴𝑃 = 𝑃 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑐𝑙𝑎𝑠𝑠) − 𝑚𝑎𝑥{𝑃 (𝑜𝑡ℎ𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)} (3)

If the gap function increases, the adversarial example becomes more
robust, because the changes of the probabilities caused by some image
transformations (e.g., compression or resizing) tend to be less effective.
Indeed, if the gap function is high, a variation of the probabilities could
not be sufficient to misclassify.

4.2. Generation of the adversarial examples

Obtaining at the same time imperceptibility and robustness is com-
plicated. Typically, a robust attack would require perceptible input
changes, while an imperceptible attack does not change the classifica-
tion much. We propose an iterative methodology deploying a heuristic
4

algorithm to automatically generate targeted imperceptible and robust
adversarial examples in a black-box scenario, i.e., we assume that the
attacker has access to the input image and to the output probabilities
vector, but not to the network model. Fig. 5 shows our attack gener-
ation methodology and Algorithm 1 provides details. The goal of our
methodology is to modify the input image to maximize the gap function
(i.e., imperceptibility) until the distance between the original and the
adversarial example is under 𝐷𝑀𝐴𝑋 (i.e., robustness).

The algorithm considers that every pixel is composed of three differ-
nt values, since the images are based on three channels (red, green and
lue: RGB). Compared to the algorithm proposed by Luo et al. [24], we
pply our attack to a set of pixels with the highest standard deviation
t every iteration to create imperceptible perturbations. Moreover, our
lgorithm automatically decides if it is more effective to add or subtract
he noise, to maximize the gap function, according to the values of two
arameters, 𝐺𝐴𝑃 (+) and 𝐺𝐴𝑃 (−). These modifications increase the
mperceptibility and the robustness of the attack. For clarity, we have
xpressed the formula used to compute the standard deviation in a
ore comprehensive form.

Algorithm 1 : Generating Adversarial Attacks
Given: original sample X, maximum human perceptual distance
𝐷𝑀𝐴𝑋 , noise magnitude 𝛿, 𝑀 ⋅𝑁 pixels, target class, P, V
while 𝐷(𝑋∗, 𝑋) < 𝐷𝑀𝐴𝑋 do

-Compute Standard Deviation SD for every pixel
-Select a subset P of pixels included in the area of 𝑀 ⋅ 𝑁 pixels
with the highest SD for every channel
-Compute 𝐺𝐴𝑃 , 𝐺𝐴𝑃 (−), 𝐺𝐴𝑃 (+)
if 𝐺𝐴𝑃 (−) > 𝐺𝐴𝑃 (+) then
𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑃 𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑥𝑖,𝑗 ) = [𝐺𝐴𝑃 (−) − 𝐺𝐴𝑃 ] ⋅ 𝑆𝐷(𝑥𝑖,𝑗 )

else
𝑉 𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑃 𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑥𝑖,𝑗 ) = [𝐺𝐴𝑃 (+) − 𝐺𝐴𝑃 ] ⋅ 𝑆𝐷(𝑥𝑖,𝑗 )

end if
-Sort in descending order VariationPriority for every channel
-Select V pixels with highest VariationPriority between the three
channels
if 𝐺𝐴𝑃 (−) > 𝐺𝐴𝑃 (+) then

Subtract noise with magnitude 𝛿 from the pixel in the respective
channel

else
Add noise with magnitude 𝛿 to the pixel in the respective
channel

end if
-Compute 𝐷(𝑋∗, 𝑋) as the sum of the 𝐷(𝑋∗, 𝑋) of every channel
-Update the original example with the adversarial one

end while

Our algorithm operates in the following steps:

1. Select a subset 𝑃 of pixels, included in the area 𝑀 ⋅ 𝑁 , with
the highest SD for every RGB channel, so that their possible
modification is difficult to detect.

2. Compute the gap function as the difference between the proba-
bility of the target class and the maximum output probability.

3. For each pixel of 𝑃 , compute 𝐺𝐴𝑃 (+) and 𝐺𝐴𝑃 (−): these quan-
tities correspond to the values of the gap function, estimated by
adding and by subtracting, respectively, a perturbation unit to
each pixel. These gaps are useful to decide if it is more effective
to add or subtract the noise. For each pixel of 𝑃 , we consider
the greatest value between 𝐺𝐴𝑃 (+) and 𝐺𝐴𝑃 (−) to maximize
the distance between the two probabilities.

4. For each pixel of 𝑃 , calculate the Variation Priority by multi-
plying the gap difference to the SD of the pixel. This quantity
indicates the efficacy of the pixel perturbation.

5. For every channel, we order the 𝑃 values of Variation Priority

and perturb the highest 𝑉 values.
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Fig. 5. Our methodology to generate adversarial examples. The blue-colored boxes are aimed to fool the network, while the green-colored boxes control the imperceptibility of
the adversarial attack, whose images at the various steps are showed in the red boxes. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. 6. Images for the attack applied to the CapsNet: (a) Original input image of Example 1. (b) Image misclassified by the CapsNet at iteration 13 for Case I. (c) Image misclassified
by the CapsNet at iteration 16 for Case I. (d) Image at iteration 12 for Case II. (e) Original input image for Example 2. (f) Image at iteration 5, applied to the CapsNet. (g) Image
misclassified by the CapsNet at iteration 21.
Fig. 7. CapsNet results for the GTSRB dataset: (a) Output probabilities of the Example 1 - Case I: blue bars represent the starting probabilities, orange bars the probabilities at
the point of misclassification and yellow bars at the 𝐷𝑀𝐴𝑋 . (b) Output probabilities of the Example 1 - Case II: blue bars represent the starting probabilities and orange bars the
probabilities at the 𝐷𝑀𝐴𝑋 . (c) Output probabilities of the Example 2: blue bars represent the starting probabilities, and orange bars the probabilities at the 𝐷𝑀𝐴𝑋 . (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
6. Only 𝑉 values of the total 3 ⋅ 𝑃 are perturbed. We add or sub-
tract the noise according to the highest value of the previously
computed 𝐺𝐴𝑃 (+) and 𝐺𝐴𝑃 (−).

7. Once the original input image is replaced by the adversarial
one, the next iteration starts. The iterations continue until the
distance 𝐷 overcomes 𝐷𝑀𝐴𝑋 .

4.3. Attack methodology discussion

Note, if a valid solution cannot be found, i.e., a successful attack
cannot be generated with sufficient imperceptibility, then our method-
ology will output the best possible solution that is misclassified and can
potentially have slightly perceptible noise in certain regions. In prac-
tice, we can discard any such solution where the noise is perceptible,
and re-run the algorithm for the next image at the operational time. It
is important to note that there is a tradeoff between imperceptibility
and robustness. Having both a very high robustness and a complete
imperceptibility may be a really hard target to achieve, as typically
achieving high robustness requires a strong noise which is more likely
to be visible.
5

5. Evaluating our attack methodology

5.1. Experimental setup

We apply our algorithm, shown in Section 4.2, to the previously
described CapsNet, DeepCaps, LeNet, VGGNet and ResNet. To verify
how our algorithm works, we test it on two different examples. We
consider M = N = 32, because the GTRSB and CIFAR10 datasets are
composed of 32 × 32 images, P = 100 and V = 20. The value of 𝛿 is
equal to the 10% of the maximum value between all the pixels. The
parameter 𝐷𝑀𝐴𝑋 depends on the SD of the pixels of the input image:
its value changes according to the examples because 𝐷(𝑋∗, 𝑋) does not
increase in the same way for each example.

5.2. Our methodology applied to the CapsNet

We test the CapsNet on two different examples of the GTSRB
dataset, shown in Fig. 6(a) (Example 1) and Fig. 6(e) (Example 2). To
test whether our methodology works independently from the choice of
the target class, we distinguish two cases:

Case I: the target class is the class relative to the second highest
initial output probability.

Case II: the target class is the class relative to the fifth highest
probability between all the initial output probabilities.
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Fig. 8. Images for the attack applied to the CNNs: (a) Original input image for Example 1 (b) Image at the iteration 3, applied to the VGGNet. (c) Image at the iteration 9,
misclassified by the VGGNet. (d) Original input image for Example 2. (e) Image at the iteration 2, applied to the VGGNet. (f) Image at the iteration 6, misclassified by the LeNet.
(g) Image at the iteration 13, misclassified by the LeNet.
Fig. 9. CNNs results for the GTSRB dataset: (a) Output probabilities of the Example 1 on the VGGNet: blue bars represent the starting probabilities, orange bars the probabilities
at the point of misclassification and yellow bars at the 𝐷𝑀𝐴𝑋 . (b) Output probabilities of the Example 2 on the VGGNet: blue bars represent the starting probabilities and orange
bars the probabilities at the 𝐷𝑀𝐴𝑋 . (c) Output probabilities of the Example 1 on the LeNet: blue bars represent the starting probabilities, orange bars the probabilities at the point
of misclassification and yellow bars at the 𝐷𝑀𝐴𝑋 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
By analyzing Case I and Case II, we can make the following key
observations:

1. The CapsNet classifies the input image shown in Fig. 6(a) as
‘‘120 km/h speed limit’’ (S8) with a probability equal to 0.0370.
For the Case I, the target class is ‘‘Double curve’’ (S21) with a
probability equal to 0.0297. After 13 iterations of our algorithm,
the image (Fig. 6(b)) is classified as ‘‘Double curve’’ with a
probability equal to 0.0339. Hence, the probability of the target
class has overcome the initial one, as shown in Fig. 7(a). At this
step, the distance 𝐷(𝑋∗, 𝑋) is equal to 434.20. By increasing the
number of iterations, the robustness of the attack increases as
well, because the gap between the two probabilities increases,
but also the perceptibility of the noise becomes more evident.
After the iteration 16, the distance grows above 𝐷𝑀𝐴𝑋 = 520:
the sample is represented in Fig. 6(c). This analysis shows that
there is a tradeoff between robustness and imperceptibility. For
the Case II, the probability relative to the target class ‘‘Beware
of ice/snow’’ (S30) is equal to 0.0249, as shown in Fig. 7(b).
The gap between the maximum probability and the probabil-
ity of the target class is higher than the gap in Case I. After
12 iterations, the network has not misclassified the image yet
(Fig. 6(d)). In Fig. 7(b) we can observe that the gap between
the two classes has decreased, but not enough for a misclas-
sification. However, at this iteration, the value of the distance
overcomes 𝐷𝑀𝐴𝑋 = 520. In this case, we show that our algorithm
would need more iterations to misclassify, at the cost of slightly
perceivable perturbations.

2. The CapsNet classifies the input image shown in Fig. 6(e) as
‘‘Children crossing’’ (S28) with a probability equal to 0.042.
The target class is ‘‘60 km/h speed limit’’ (S3) with a probabil-
ity equal to 0.0331. After 5 iterations, the distance overcomes
𝐷𝑀𝐴𝑋 = 250, while the network has not misclassified the image
yet (Fig. 6(f)), because the probability of the target class does not
overcome the initial maximum probability, as shown in Fig. 7(c).
The misclassification appears at the iteration 21 (Fig. 6(g)).
However, the perturbation is highly perceivable. Therefore, if
this noise perception is not acceptable, such solution would
be discarded by our methodology, and a new solution would
be searched, for which an adaptation of the constraints may
be required, or a different input image is captured in a real-
world system (e.g., a new image at a different distance from the
camera).
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5.3. Our methodology applied to the VGGNet and the LeNet

To compare the robustness of the CapsNet and the 9-layer VGGNet,
we choose to evaluate the previous two examples, which have been
applied to the CapsNet. For the Example 1, we consider only the Case
I as the benchmark, because the Case II shows a similar behavior. The
VGGNet classifies the input images with different output probabilities,
compared to the ones obtained by the CapsNet. Therefore, our metric
to evaluate the resistance of the VGGNet against our attack is based on
the value of the gap at the same distance.

To compare the robustness of the CapsNet and the 5-layer LeNet, we
consider only the Example 1 (Fig. 8(a)), because Example 2 (Fig. 8(d))
is already classified incorrectly by the LeNet.2 Applying our algorithm
to the LeNet, we observe that it is more vulnerable than the CapsNet
and the VGGNet.

From our experiments, we make these key observations:

1. The VGGNet classifies the input image (Fig. 8(a)) as ‘‘120 km/h
speed limit’’ (S8) with a probability equal to 0.976. The target
class is ‘‘100 km/h speed limit’’ (S7) with a probability equal to
0.021. After 3 iterations, the distance overcomes 𝐷𝑀𝐴𝑋 = 520,
while the VGGNet has not misclassified the image yet (Fig. 8(b)).
Hence, our algorithm would need to perform more iterations
before fooling the VGGNet, since the two initial probabilities
were very distant, as shown in Fig. 9(a). Such scenario appears
after 9 iterations (Fig. 8(c)), where the probability of the target
class is 0.483.

2. The VGGNet classifies the input image (Fig. 8(d)) as ‘‘Children
crossing’’ (S28) with a probability equal to 0.96. The target class
is ‘‘Beware of ice/snow’’ (S30) with a probability equal to 0.023.
After 2 iterations, the distance overcomes 𝐷𝑀𝐴𝑋 = 250, while
the VGGNet has not misclassified the image yet (Fig. 8(e)). As in
the previous case, this scenario is due to the high gap between
the initial probabilities, as shown in Fig. 9(b). We can also notice
that the VGGNet reaches 𝐷𝑀𝐴𝑋 in a lower number of iterations,
as compared to the CapsNet.

2 Note: the image of Example 2 belongs to the subset of images that are
correctly classified by the CapsNet and the VGGNet, but incorrectly by the
LeNet.
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Fig. 10. Images for the attack applied to the DeepCaps and ResNet20: (a) Original input image for Example 3. (b) Image at the iteration 11, misclassified by the DeepCaps. (c)
Image at the iteration 8, misclassified by the ResNet20. (d) Original input image for Example 4. (e) Image at the iteration 9, applied to the DeepCaps. (f) Image at the iteration
14, misclassified by the DeepCaps. (g) Image at the iteration 9, misclassified by the ResNet20.
Fig. 11. CIFAR10 results: (a) Output probabilities of the Example 3 on the DeepCaps: blue bars represent the starting probabilities, orange bars represent the probabilities at
the point of misclassification and yellow bars denote probabilities at the 𝐷𝑀𝐴𝑋 . (b) Output probabilities of the Example 3 on the ResNet20: blue bars represent the starting
probabilities, orange bars represent the probabilities at the point of misclassification and yellow bars denote probabilities at the 𝐷𝑀𝐴𝑋 . (c) Output probabilities of the Example
4 on the DeepCaps: blue bars represent the starting probabilities, orange bars denote the probabilities at the 𝐷𝑀𝐴𝑋 , yellow bars represent the point of misclassification with
𝐷(𝑋∗ , 𝑋) > 𝐷𝑀𝐴𝑋 . (d) Output probabilities of the Example 4 on the ResNet20: blue bars represent the starting probabilities, orange bars denote the probabilities at the point of
misclassification, which coincides to the 𝐷𝑀𝐴𝑋 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
3. The LeNet classifies the input image (Fig. 8(a)) as ‘‘120 km/h
speed limit’’ (S8) with a probability equal to 0.672. The target
class is ‘‘30 km/h speed limit’’ (S1) with a probability equal
to 0.178. After 6 iterations, the perturbations fool the LeNet,
because the image (Fig. 8(f)), is classified as the target class
with a probability equal to 0.339. The perturbations become
perceptible after 13 iterations (Fig. 8(g)), where the distance
overcomes 𝐷𝑀𝐴𝑋 = 520.

5.4. Our methodology applied to the DeepCaps and ResNet20 on the CI-
FAR10 dataset

We test the DeepCaps and ResNet on two different images of the
CIFAR10 dataset, shown in Fig. 10(a) (Example 3) and in Fig. 10(d)
(Example 4). Both analyses have been conducted by choosing the
target class as the second highest probability between the initial output
probabilities.

The following key observations can be derived from our exper-
iments:

1. For the Example 3, both the DeepCaps and the ResNet correctly
classify the input image (Fig. 10(a)) as ‘‘truck’’ (S9), and for both
networks the target class is ‘‘ship’’ (S8). As shown in Fig. 11(a),
the DeepCaps is fooled by the attack. After 6 iterations of the
attack, the image is classified as ‘‘ship’’ with a probability of
0.421. By increasing the number of iterations, the gap between
the probabilities increase, thus making the attack more robust.
After 11 iterations, the distance has overcome 𝐷𝑀𝐴𝑋 = 520, and
Fig. 10(b) shows the adversarial example generated at this point.
Similarly, the attack also fools the ResNet . After 5 iterations, it
is classified as ‘‘ship’’ with a probability equal to 0.376. At the
iteration 8 (see Fig. 10(c)), the probability associated to the class
‘‘ship’’is 0.433, while the distance has overcome 𝐷𝑀𝐴𝑋 = 520.

2. The Example 4 (Fig. 10(d)) is correctly classified as ‘‘bird’’ by
the DeepCaps, with a probability equal to 0.847. The second
highest probability, which will be the target class of the attack,
is associated to the class ‘‘horse’’ (S7). After 9 iterations, the
distance overcomes 𝐷𝑀𝐴𝑋 = 450, while the image, shown in
Fig. 10(e) is still correctly classified as ‘‘bird’’ by the DeepCaps
with a probability equal to 0.524. The yellow bars in Fig. 11(c)
show that the image in Fig. 10(f) is classified as ‘‘horse’’ with
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a probability equal to 0.365, but the distance is way beyond
𝐷𝑀𝐴𝑋 . Hence, only a perceptible noise can mislead the DeepCaps.

3. The Example 4 (Fig. 10(d)) is correctly classified as ‘‘bird’’ by
the ResNet, with a probability equal to 0.910. The target class
is ‘‘deer’’ (S4). After 9 iterations, the probability of the target class
has overcome the initial one. As shown in Fig. 11(d), the ResNet
classifies the image in Fig. 10(g) as ‘‘deer’’ with a probability
equal to 0.483. At this point, the distance has also reached
𝐷𝑀𝐴𝑋 = 450.

5.5. Attack vulnerability comparison between the CapsNet and the CNNs

From our analyses, we can observe that the vulnerability of the
9-layer VGGNet to our adversarial attack is slightly lower than the
vulnerability of the CapsNet, since the former one requires more per-
ceivable perturbations to be fooled. Our observation is corroborated
by the results in Fig. 12, where the value of 𝐷(𝑋∗, 𝑋) increases more
sharply for the VGGNet than for the CapsNet. Hence, the noise percep-
tion in the image can be measured as the value of 𝐷(𝑋∗, 𝑋) divided
by the number of iterations. Note, the noise in the VGGNet becomes
perceivable after few iterations. Moreover, we can observe that the
choice of the target class plays a key role for the success of the attack.

We also notice other features that lead to the differences between
the VGGNet and the CapsNet. The VGGNet is deeper and contains
a larger number of weights, while the CapsNet can achieve a simi-
lar accuracy with a smaller footprint. This effect causes a disparity
in the prediction confidence between the two networks. It is clear
that the CapsNet has a much higher learning capability, compared to
the VGGNet, but this phenomena does not reflect in the prediction
confidence. Indeed, comparing Figs. 7 and 9, we can notice that the
output probabilities predicted by the CapsNet are close to each other,
even more than the LeNet. However, the perturbations do not affect
the output probabilities of the CapsNet as much as for the cases of
the CNNs. The LeNet, even though it has a similar depth and similar
number of parameters, is more vulnerable than the CapsNet.

By comparing the DeepCaps with the ResNet20, we can notice that,
despite the prediction confidence is slightly higher for the ResNet, the
DeepCaps is less vulnerable to these perturbations. For instance, as
discussed in Section 5.4, after 9 iterations of the attack running on
the Example 4, the ResNet is fooled, while the DeepCaps still correctly
classifies.
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Table 3
Comparison between the contributions in this work and the related works.

Analyzed network models Analyzed datasets Affine transformation analysis
& Techniques used

Adversarial attacks analysis
& Techniques used

Gu et al. [34] CNN, CapsNet,
Proposed network

MNIST, Fashion-MNIST,
SVHN, CIFAR10

✓

Thickness, width, shift, rotation
✕

Michels et al. [5] CapsNet, ConvNet MNIST, Fashion-MNIST,
SVHN, CIFAR10

✕ ✓

CW, Boundary, DeepFool, Universal

SeVuC (our work) CapsNet, LeNet, VGGNet,
DeepCaps, ResNet20

GTSRB, CIFAR10 ✓

Zoom, shift, rotation
✓

Proposed Attack Methodology
Fig. 12. 𝐷(𝑋∗ , 𝑋) behavior for (a) Example 1, and (b) Example 2.

Moreover, recalling from Section 3, we observed that the VGGNet
nd the CapsNet are more resistant to the affine transformations com-
ared to the LeNet, and that the DeepCaps is more resistant than the
esNet20. This behavior is consistent with the results obtained after
pplying our adversarial attack as well.

. Discussion and comparison with the related works

In this work, we have studied the vulnerabilities of CapsNets to
ffine transformations and adversarial attacks by comparing them to
raditional DNNs. Among the related works discussed in Section 2.2,
he works of Gu et al. [34] and Michels et al. [5] represent the most
losely-related analyses to our work. However, Gu et al. only analyze
he robustness against affine transformation, and Michels et al. only
tudy the vulnerability against adversarial attacks. On the other hand,
e perform a comprehensive analysis that investigates both types of

ulnerabilities. Table 3 summarizes the key differences between our
orks and the related works. Moreover, we also conduct experiments
n the GTSRB dataset, which is not frequently used in prior works
espite providing a valuable benchmark for traffic sign recognition.
urthermore, we provide detailed analyses of the output probability
ariations for different images under various perturbations, which con-
titutes useful information for understanding the functionality of the
rocess.

. Conclusion

This paper studied the robustness of CapsNets under adversarial
ttacks and affine transformations. We proposed an iterative method-
logy to generate targeted adversarial attacks in a black box scenario.
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We applied our attack to the GTSRB dataset and analyzed its impact on
a CapsNet, a 5-layer LeNet and a 9-layer VGGNet, and to the CIFAR10
dataset analyzing the impact on the DeepCaps and a 20-layer ResNet.
Our experiments show that the CapsNet appears more robust than the
LeNet to the attack, but slightly less than the VGGNet. However, the
modifications of the pixels in the traffic signs are less perceivable when
our algorithm is applied to the CapsNet, rather than to the VGGNet.
A serious issue for the CapsNet is that the gap between the output
probabilities is lower than the one computed on the VGGNet. However,
the changes of the probabilities at the output of the CapsNet is lower
than their changes in the VGGNet. Hence, further modifications of the
CapsNet algorithm, aiming to increase the prediction confidence, would
be beneficial to improve its robustness. Towards this, an example is
represented by the DeepCaps, which appears more robust than the
ResNet, under similar attack settings.
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