38,471 research outputs found

    Urinary proteomics using capillary electrophoresis coupled to mass spectrometry for diagnosis and prognosis in kidney diseases

    Get PDF
    Purpose of review: Urine is the most useful of body fluids for biomarker research. Therefore, we have focused on urinary proteomics, using capillary electrophoresis coupled to mass spectrometry, to investigate kidney diseases in recent years. Recent findings: Several urinary proteomics studies for the detection of various kidney diseases have indicated the potential of this approach aimed at diagnostic and prognostic assessment. Urinary protein biomarkers such as collagen fragments, serum albumin, [alpha]-1-antitrypsin, and uromodulin can help to explain the processes involved during disease progression. Summary: Urinary proteomics has been used in several studies in order to identify and validate biomarkers associated with different kidney diseases. These biomarkers, with improved sensitivity and specificity when compared with the current gold standards, provide a significant alternative for diagnosis and prognosis, as well as improving clinical decision-making

    A new perspective for the training assessment: Machine learning-based neurometric for augmented user's evaluation

    Get PDF
    Inappropriate training assessment might have either high social costs and economic impacts, especially in high risks categories, such as Pilots, Air Traffic Controllers, or Surgeons. One of the current limitations of the standard training assessment procedures is the lack of information about the amount of cognitive resources requested by the user for the correct execution of the proposed task. In fact, even if the task is accomplished achieving the maximum performance, by the standard training assessment methods, it would not be possible to gather and evaluate information about cognitive resources available for dealing with unexpected events or emergency conditions. Therefore, a metric based on the brain activity (neurometric) able to provide the Instructor such a kind of information should be very important. As a first step in this direction, the Electroencephalogram (EEG) and the performance of 10 participants were collected along a training period of 3 weeks, while learning the execution of a new task. Specific indexes have been estimated from the behavioral and EEG signal to objectively assess the users' training progress. Furthermore, we proposed a neurometric based on a machine learning algorithm to quantify the user's training level within each session by considering the level of task execution, and both the behavioral and cognitive stabilities between consecutive sessions. The results demonstrated that the proposed methodology and neurometric could quantify and track the users' progresses, and provide the Instructor information for a more objective evaluation and better tailoring of training programs. © 2017 Borghini, Aricò, Di Flumeri, Sciaraffa, Colosimo, Herrero, Bezerianos, Thakor and Babiloni

    Accuracy Measures for the Comparison of Classifiers

    Full text link
    The selection of the best classification algorithm for a given dataset is a very widespread problem. It is also a complex one, in the sense it requires to make several important methodological choices. Among them, in this work we focus on the measure used to assess the classification performance and rank the algorithms. We present the most popular measures and discuss their properties. Despite the numerous measures proposed over the years, many of them turn out to be equivalent in this specific case, to have interpretation problems, or to be unsuitable for our purpose. Consequently, classic overall success rate or marginal rates should be preferred for this specific task.Comment: The 5th International Conference on Information Technology, amman : Jordanie (2011
    corecore