2,969 research outputs found

    Improving Table Compression with Combinatorial Optimization

    Full text link
    We study the problem of compressing massive tables within the partition-training paradigm introduced by Buchsbaum et al. [SODA'00], in which a table is partitioned by an off-line training procedure into disjoint intervals of columns, each of which is compressed separately by a standard, on-line compressor like gzip. We provide a new theory that unifies previous experimental observations on partitioning and heuristic observations on column permutation, all of which are used to improve compression rates. Based on the theory, we devise the first on-line training algorithms for table compression, which can be applied to individual files, not just continuously operating sources; and also a new, off-line training algorithm, based on a link to the asymmetric traveling salesman problem, which improves on prior work by rearranging columns prior to partitioning. We demonstrate these results experimentally. On various test files, the on-line algorithms provide 35-55% improvement over gzip with negligible slowdown; the off-line reordering provides up to 20% further improvement over partitioning alone. We also show that a variation of the table compression problem is MAX-SNP hard.Comment: 22 pages, 2 figures, 5 tables, 23 references. Extended abstract appears in Proc. 13th ACM-SIAM SODA, pp. 213-222, 200

    Meta-heuristics for stable scheduling on a single machine.

    Get PDF
    This paper presents a model for single-machine scheduling with stability objective and a common deadline. Job durations are uncertain, and our goal is to ensure that there is little deviation between planned and actual job starting times. We propose two meta-heuristics for solving an approximate formulation of the model that assumes that exactly one job is disrupted during schedule execution, and we also present a meta-heuristic for the global problem with independent job durationsMeta-heuristics; Robustness; Single-machine scheduling; Uncertainty;

    Graph Partitioning-Based Coordination Methods for Large-Scale Multidisciplinary Design Optimization Problems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97127/1/AIAA2012-5522.pd
    • …
    corecore