11,309 research outputs found

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains

    Local Regularization Assisted Orthogonal Least Squares Regression

    No full text
    A locally regularized orthogonal least squares (LROLS) algorithm is proposed for constructing parsimonious or sparse regression models that generalize well. By associating each orthogonal weight in the regression model with an individual regularization parameter, the ability for the orthogonal least squares (OLS) model selection to produce a very sparse model with good generalization performance is greatly enhanced. Furthermore, with the assistance of local regularization, when to terminate the model selection procedure becomes much clearer. This LROLS algorithm has computational advantages over the recently introduced relevance vector machine (RVM) method

    Learning Sensor Feedback Models from Demonstrations via Phase-Modulated Neural Networks

    Full text link
    In order to robustly execute a task under environmental uncertainty, a robot needs to be able to reactively adapt to changes arising in its environment. The environment changes are usually reflected in deviation from expected sensory traces. These deviations in sensory traces can be used to drive the motion adaptation, and for this purpose, a feedback model is required. The feedback model maps the deviations in sensory traces to the motion plan adaptation. In this paper, we develop a general data-driven framework for learning a feedback model from demonstrations. We utilize a variant of a radial basis function network structure --with movement phases as kernel centers-- which can generally be applied to represent any feedback models for movement primitives. To demonstrate the effectiveness of our framework, we test it on the task of scraping on a tilt board. In this task, we are learning a reactive policy in the form of orientation adaptation, based on deviations of tactile sensor traces. As a proof of concept of our method, we provide evaluations on an anthropomorphic robot. A video demonstrating our approach and its results can be seen in https://youtu.be/7Dx5imy1KcwComment: 8 pages, accepted to be published at the International Conference on Robotics and Automation (ICRA) 201

    Theoretical Properties of Projection Based Multilayer Perceptrons with Functional Inputs

    Get PDF
    Many real world data are sampled functions. As shown by Functional Data Analysis (FDA) methods, spectra, time series, images, gesture recognition data, etc. can be processed more efficiently if their functional nature is taken into account during the data analysis process. This is done by extending standard data analysis methods so that they can apply to functional inputs. A general way to achieve this goal is to compute projections of the functional data onto a finite dimensional sub-space of the functional space. The coordinates of the data on a basis of this sub-space provide standard vector representations of the functions. The obtained vectors can be processed by any standard method. In our previous work, this general approach has been used to define projection based Multilayer Perceptrons (MLPs) with functional inputs. We study in this paper important theoretical properties of the proposed model. We show in particular that MLPs with functional inputs are universal approximators: they can approximate to arbitrary accuracy any continuous mapping from a compact sub-space of a functional space to R. Moreover, we provide a consistency result that shows that any mapping from a functional space to R can be learned thanks to examples by a projection based MLP: the generalization mean square error of the MLP decreases to the smallest possible mean square error on the data when the number of examples goes to infinity
    corecore