2,185 research outputs found

    Encoding in the Dark Grand Challenge:An Overview

    Get PDF
    A big part of the video content we consume from video providers consists of genres featuring low-light aesthetics. Low light sequences have special characteristics, such as spatio-temporal varying acquisition noise and light flickering, that make the encoding process challenging. To deal with the spatio-temporal incoherent noise, higher bitrates are used to achieve high objective quality. Additionally, the quality assessment metrics and methods have not been designed, trained or tested for this type of content. This has inspired us to trigger research in that area and propose a Grand Challenge on encoding low-light video sequences. In this paper, we present an overview of the proposed challenge, and test state-of-the-art methods that will be part of the benchmark methods at the stage of the participants' deliverable assessment. From this exploration, our results show that VVC already achieves a high performance compared to simply denoising the video source prior to encoding. Moreover, the quality of the video streams can be further improved by employing a post-processing image enhancement method

    Real-time filtering and detection of dynamics for compression of HDTV

    Get PDF
    The preprocessing of video sequences for data compressing is discussed. The end goal associated with this is a compression system for HDTV capable of transmitting perceptually lossless sequences at under one bit per pixel. Two subtopics were emphasized to prepare the video signal for more efficient coding: (1) nonlinear filtering to remove noise and shape the signal spectrum to take advantage of insensitivities of human viewers; and (2) segmentation of each frame into temporally dynamic/static regions for conditional frame replenishment. The latter technique operates best under the assumption that the sequence can be modelled as a superposition of active foreground and static background. The considerations were restricted to monochrome data, since it was expected to use the standard luminance/chrominance decomposition, which concentrates most of the bandwidth requirements in the luminance. Similar methods may be applied to the two chrominance signals

    Designs and Implementations in Neural Network-based Video Coding

    Full text link
    The past decade has witnessed the huge success of deep learning in well-known artificial intelligence applications such as face recognition, autonomous driving, and large language model like ChatGPT. Recently, the application of deep learning has been extended to a much wider range, with neural network-based video coding being one of them. Neural network-based video coding can be performed at two different levels: embedding neural network-based (NN-based) coding tools into a classical video compression framework or building the entire compression framework upon neural networks. This paper elaborates some of the recent exploration efforts of JVET (Joint Video Experts Team of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC29) in the name of neural network-based video coding (NNVC), falling in the former category. Specifically, this paper discusses two major NN-based video coding technologies, i.e. neural network-based intra prediction and neural network-based in-loop filtering, which have been investigated for several meeting cycles in JVET and finally adopted into the reference software of NNVC. Extensive experiments on top of the NNVC have been conducted to evaluate the effectiveness of the proposed techniques. Compared with VTM-11.0_nnvc, the proposed NN-based coding tools in NNVC-4.0 could achieve {11.94%, 21.86%, 22.59%}, {9.18%, 19.76%, 20.92%}, and {10.63%, 21.56%, 23.02%} BD-rate reductions on average for {Y, Cb, Cr} under random-access, low-delay, and all-intra configurations respectively

    A computational model of visual attention.

    Get PDF
    Visual attention is a process by which the Human Visual System (HVS) selects most important information from a scene. Visual attention models are computational or mathematical models developed to predict this information. The performance of the state-of-the-art visual attention models is limited in terms of prediction accuracy and computational complexity. In spite of significant amount of active research in this area, modelling visual attention is still an open research challenge. This thesis proposes a novel computational model of visual attention that achieves higher prediction accuracy with low computational complexity. A new bottom-up visual attention model based on in-focus regions is proposed. To develop the model, an image dataset is created by capturing images with in-focus and out-of-focus regions. The Discrete Cosine Transform (DCT) spectrum of these images is investigated qualitatively and quantitatively to discover the key frequency coefficients that correspond to the in-focus regions. The model detects these key coefficients by formulating a novel relation between the in-focus and out-of-focus regions in the frequency domain. These frequency coefficients are used to detect the salient in-focus regions. The simulation results show that this attention model achieves good prediction accuracy with low complexity. The prediction accuracy of the proposed in-focus visual attention model is further improved by incorporating sensitivity of the HVS towards the image centre and the human faces. Moreover, the computational complexity is further reduced by using Integer Cosine Transform (ICT). The model is parameter tuned using the hill climbing approach to optimise the accuracy. The performance has been analysed qualitatively and quantitatively using two large image datasets with eye tracking fixation ground truth. The results show that the model achieves higher prediction accuracy with a lower computational complexity compared to the state-of-the-art visual attention models. The proposed model is useful in predicting human fixations in computationally constrained environments. Mainly it is useful in applications such as perceptual video coding, image quality assessment, object recognition and image segmentation

    IQNet: Image Quality Assessment Guided Just Noticeable Difference Prefiltering For Versatile Video Coding

    Full text link
    Image prefiltering with just noticeable distortion (JND) improves coding efficiency in a visual lossless way by filtering the perceptually redundant information prior to compression. However, real JND cannot be well modeled with inaccurate masking equations in traditional approaches or image-level subject tests in deep learning approaches. Thus, this paper proposes a fine-grained JND prefiltering dataset guided by image quality assessment for accurate block-level JND modeling. The dataset is constructed from decoded images to include coding effects and is also perceptually enhanced with block overlap and edge preservation. Furthermore, based on this dataset, we propose a lightweight JND prefiltering network, IQNet, which can be applied directly to different quantization cases with the same model and only needs 3K parameters. The experimental results show that the proposed approach to Versatile Video Coding could yield maximum/average bitrate savings of 41\%/15\% and 53\%/19\% for all-intra and low-delay P configurations, respectively, with negligible subjective quality loss. Our method demonstrates higher perceptual quality and a model size that is an order of magnitude smaller than previous deep learning methods

    Escaping the complexity-bitrate-quality barriers of video encoders via deep perceptual optimization

    Get PDF
    We extend the concept of learnable video precoding (rate-aware neural-network processing prior to encoding) to deep perceptual optimization (DPO). Our framework comprises a pixel-to-pixel convolutional neural network that is trained based on the virtualization of core encoding blocks (block transform, quantization, block-based prediction) and multiple loss functions representing rate, distortion and visual quality of the virtual encoder. We evaluate our proposal with AVC/H.264 and AV1 under per-clip rate-quality optimization. The results show that DPO offers, on average, 14.2% bitrate reduction over AVC/H.264 and 12.5% bitrate reduction over AV1. Our framework is shown to improve both distortion- and perception-oriented metrics in a consistent manner, exhibiting only 3% outliers, which correspond to content with peculiar characteristics. Thus, DPO is shown to offer complexity-bitrate-quality tradeoffs that go beyond what conventional video encoders can offe

    Lightning-Fast Dual-Layer Lossless Coding for Radiance Format High Dynamic Range Images

    Full text link
    This paper proposes a fast dual-layer lossless coding for high dynamic range images (HDRIs) in the Radiance format. The coding, which consists of a base layer and a lossless enhancement layer, provides a standard dynamic range image (SDRI) without requiring an additional algorithm at the decoder and can losslessly decode the HDRI by adding the residual signals (residuals) between the HDRI and SDRI to the SDRI, if desired. To suppress the dynamic range of the residuals in the enhancement layer, the coding directly uses the mantissa and exponent information from the Radiance format. To further reduce the residual energy, each mantissa is modeled (estimated) as a linear function, i.e., a simple linear regression, of the encoded-decoded SDRI in each region with the same exponent. This is called simple linear regressive mantissa estimator. Experimental results show that, compared with existing methods, our coding reduces the average bitrate by approximately 1.571.57-6.686.68 % and significantly reduces the average encoder implementation time by approximately 87.1387.13-98.9698.96 %
    • …
    corecore