4,254 research outputs found

    UPI: A Primary Index for Uncertain Databases

    Get PDF
    Uncertain data management has received growing attention from industry and academia. Many efforts have been made to optimize uncertain databases, including the development of special index data structures. However, none of these efforts have explored primary (clustered) indexes for uncertain databases, despite the fact that clustering has the potential to offer substantial speedups for non-selective analytic queries on large uncertain databases. In this paper, we propose a new index called a UPI (Uncertain Primary Index) that clusters heap files according to uncertain attributes with both discrete and continuous uncertainty distributions. Because uncertain attributes may have several possible values, a UPI on an uncertain attribute duplicates tuple data once for each possible value. To prevent the size of the UPI from becoming unmanageable, its size is kept small by placing low-probability tuples in a special Cutoff Index that is consulted only when queries for low-probability values are run. We also propose several other optimizations, including techniques to improve secondary index performance and techniques to reduce maintenance costs and fragmentation by buffering changes to the table and writing updates in sequential batches. Finally, we develop cost models for UPIs to estimate query performance in various settings to help automatically select tuning parameters of a UPI. We have implemented a prototype UPI and experimented on two real datasets. Our results show that UPIs can significantly (up to two orders of magnitude) improve the performance of uncertain queries both over clustered and unclustered attributes. We also show that our buffering techniques mitigate table fragmentation and keep the maintenance cost as low as or even lower than using an unclustered heap file.National Science Foundation (U.S.) (Grant IIS-0448124)National Science Foundation (U.S.) (Grant IIS-0905553)National Science Foundation (U.S.) (Grant IIS-0916691

    Doctor of Philosophy

    Get PDF
    dissertationX-ray computed tomography (CT) is a widely popular medical imaging technique that allows for viewing of in vivo anatomy and physiology. In order to produce high-quality images and provide reliable treatment, CT imaging requires the precise knowledge of t

    RECAP: Towards Precise Radiology Report Generation via Dynamic Disease Progression Reasoning

    Full text link
    Automating radiology report generation can significantly alleviate radiologists' workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient's current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.Comment: Accepted by Findings of EMNLP 202
    corecore