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ABSTRACT

X-ray computed tomography (CT) is a widely popular medical imaging technique that

allows for viewing of in vivo anatomy and physiology. In order to produce high-quality

images and provide reliable treatment, CT imaging requires the precise knowledge of the

motion of the imaging system as well as the motion of the patient undergoing imaging.

Cone-beam CT is a specific CT modality in which the imaging system has a point X-ray

source that emits diverging X-ray beams toward a flat detector. A mobile fluoroscopic

C-arm has these properties, but since mobile C-arms are designed to be relatively inexpen-

sive and mobile, the geometric parameters that describe the motion of these systems are

imprecise. Applying standard CT reconstruction methods with data from these devices

yields poor image quality, so three-dimensional (3D) reconstruction on mobile C-arms is

rare. Patient motion in CT imaging is also clinically relevant. In thoracic CT, knowledge of

the patient’s breathing motion is used to inform dose calculations and treatment decisions

in radiation therapy of lung cancer.

In this dissertation, I provide methods for estimating motion in both these cases. I

introduce a CT reconstruction framework for mobile C-arms that is robust to imprecise

geometries. In the proposed method, I jointly estimate the 3D image of attenuation co-

efficients and the geometry of the C-arm system. For thoracic CT imaging, I introduce a

method for estimating breathing motion that models both the physics of CT acquisition

and the physiology of respiration. This method models CT images as densities to account

for the changing image intensity that corresponds to changing lung density. This method

also incorporates a priori knowledge of tissue compressibility. In particular, it allows vol-

ume change inside the lungs while restricting volume change in the soft tissue and bones,

yielding a highly accurate estimate of respiratory motion while remaining computationally

efficient.
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CHAPTER 1

INTRODUCTION

Advancements in medical imaging over the past several decades have provided clin-

icians with noninvasive methods to view in vivo anatomy, make diagnoses, and inform

treatment strategies. In traditional X-ray radiography, images are created as X-rays par-

tially penetrate anatomy before being recorded on a detector. Image contrast at the detector

is created as different anatomies attenuate X-rays at different rates: bones highly attenu-

ate the X-ray beam, soft tissue moderately attenuates the beam, and air has negligible

attenuation. This localized property of X-ray attenuation is known as the linear attenuation

coefficient.

A more recent extension of X-ray radiography is X-ray computed tomography (CT).

In X-ray CT, a scanner acquires multiple X-ray projections from different orientations sur-

rounding the patient. These images are then combined to mathematically solve for the

3D volume of linear attenuation coefficients. This resulting 3D image of patient anatomy

yields a much more natural and informative way of viewing internal anatomy than tra-

ditional two-dimensional (2D) X-ray radiographs, where different anatomical structures

are in superposition. The process of solving for this underlying 3D volume given multiple

X-ray projections is called CT reconstruction.

One of the greatest challenges in X-ray CT is dealing with uncertain motion. Uncertain

motion in the acquisition system leads to miscalibration artifacts [1, 2, 3], diminishing

the quality and diagnostic value of the reconstructed images. Uncertain motion after

reconstruction (for example, between consecutive phases of the breathing cycle in thoracic

CT) can lead to errors in radiation therapy of lung cancer, where a moving tumor is

targeted with ionizing radiation. In this dissertation, I develop methods for estimating

the uncertain motion in each of these cases, thereby enhancing the utility of X-ray CT.
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1.1 X-ray Computed Tomography

The basic problem statement of X-ray computed tomography is as follows: given pro-

jection data (X-ray images with corresponding pose information), estimate the 3D volume

of X-ray linear attenuation coefficients. CT reconstruction is the process of solving for this

3D volume.

As an X-ray photon passes through a material, it may interact with individual atoms

via two different mechanisms: the photoelectric effect and Compton scattering. In the

photoelectric effect, an X-ray photon is absorbed by an atom, causing the ejection of a

photoelectron. In Compton scattering, a photon deflects at an angle after interacting with

a valence electron. Both these effects contribute to the attenuation of an X-ray beam. The

total attenuation of a narrow X-ray beam through a material is theoretically described by

the Beer-Lambert law. If an X-ray beam with intensity i0 is sent through a material, the

attenuated X-ray intensity at the detector id is

id = i0 exp

(

−
∫

l
µ(x′)dx′

)

, (1.1)

where µ(x) is the linear attenuation coefficient at a location along the path, and this line

integral is from the X-ray source to the detector element. Each of these line integrals

in space is described by the geometric parameters (position and orientation of imaging

components) of the imaging system at a point in time. The “forward problem” is easily

modeled by this equation: given an image of attenuation coefficients, solve for the projec-

tion data. The “inverse problem” associated with CT imaging is more challenging: given

projection data, solve for the image of attenuation coefficients.

Current CT reconstruction methods make several assumptions in their formulations.

The first assumption is that the geometric information accompanying each X-ray projection

is sufficiently accurate. The second assumption is that the 3D volume is sufficiently static

throughout the scan.

The first assumption is reasonable for large, dedicated CT scanners. However, this

assumption does not hold for mobile C-arms due to their variable and uncalibrated geom-

etry. The second assumption is reasonable for imaging of the head and extremities as they

can be forced to remain immobile, but in thoracic imaging, this assumption is inaccurate

due to patient breathing. This dissertation develops methods for CT imaging that address
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these two assumptions by accurately estimating the true motion of the CT scanner and the

patient.

1.2 Mobile C-arm Reconstruction

A mobile fluoroscopic C-arm is a widely used imaging device that creates 2D X-ray

images in real-time. Fluoroscopic C-arms are used in many procedures, including ortho-

pedic applications (guiding of screws and plates, arthrography), cardiovascular applica-

tions (cardiac catheterization, stent placement, placement of intravenous catheters, an-

giography, bolus chasing), and gastroenterology procedures (barium X-rays, intravenous

pyelograms). Their current widespread adoption is due to their good 2D image quality,

relatively low cost, and mobility.

A fluoroscopic C-arm has an X-ray point source at one end of the “C” and a flat detector

at the other end (see Figure 1.1). This C-arm gantry moves to acquire X-ray images from

various positions and orientations. Although a mobile C-arm is designed primarily to be a

2D imaging device, it has the same basic geometry as a fixed-room cone-beam CT scanner.

Because of these similarities, implementing 3D reconstruction appears feasible. The impact

of implementing 3D reconstruction on a mobile C-arm is twofold: it improves the utility of

mobile C-arms and decreases the cost of 3D imaging. Currently, pre- and postoperative

Figure 1.1. GE Mobile C-arm with the X-ray source (bottom of “C”) and detector (top of
“C”).
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CT scans are often done on a dedicated CT scanner. Implementing 3D imaging on a

mobile C-arm will allow the 3D imaging and surgery to occur in the same location, thereby

saving time. Also, since the price of a mobile C-arm is significantly less than a dedicated

CT scanner, implementing 3D imaging on a mobile C-arm would decrease the cost of

3D imaging and thereby increase the access to 3D imaging, particularly in developing

countries.

Since mobile C-arms are inherently designed for 2D imaging, they have several char-

acteristics that make implementing 3D imaging especially challenging. Most mobile C-

arms have limited angular range, nonisocentric orbits, and weak or no motorization. The

largest barrier to 3D imaging in mobile C-arms is their variable and uncalibrated geom-

etry. Dedicated CT scanners have precise internal motors and rigid components, which

make the given geometric parameters at each projection quite accurate. Even with such

rigidity, these scanners must be properly calibrated, as the accuracy of the given parame-

ters degrades over time. These machines undergo routine maintenance to recalibrate the

geometry, typically requiring specially designed calibration phantoms [4, 5, 6, 7].

Unlike fixed-room CT scanners, the geometry associated with mobile C-arms changes

substantially from scan to scan, and only a small portion of this motion is repeatable.

Furthermore, some mobile C-arms have no motorization, which requires the clinician to

manually perform an orbital scan. This motion is clearly not repeatable from scan to scan,

but even machines with small internal motors do not produce repeatable results. This un-

certainty associated with the geometric parameters is significant, so a naive reconstruction

using the given parameters produces a very poor reconstruction image.

CT reconstruction currently exists on many fixed-room C-arms (including the Siemens

Artis Zeego and the GE Innova CT), but exists on only a select few mobile C-arms: the

Siemens Siremobile Iso-C3D, the Philips BV Pulsera, and the Ziehm Vision RFD 3D. All

these systems were built with 3D imaging as a primary feature: they all have isocentric

orbits and significantly more physical stability than the majority of mobile C-arms. A

reconstruction method that is robust to geometric uncertainties would have widespread

adoption in mobile C-arms, as it would limit the need to expensively improve the hard-

ware of the C-arm and could even be used to retrofit existing mobile C-arms. Additionally,

this method could be used in fixed-room cone-beam scanners to eliminate their need for
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routine calibration.

In this dissertation, I propose a method for CT reconstruction that is robust to geometric

uncertainty. This method does not require the extensive hardware modifications that have

been implemented in current mobile C-arms designed for 3D imaging. The proposed

method can be implemented efficiently using graphics processing units (GPUs); therefore,

the only increase to the cost is in computation. Furthermore, this technology can be used

somewhere in between these two extremes: it can be used to improve upon imprecise sen-

sor data combined with moderate hardware improvements to create an improved image.

1.3 Thoracic Imaging

According to the Centers for Disease Control and Prevention, lung cancer is the third

most common form of cancer, yet is by far the leading cause of cancer death, accounting

for approximately 27 percent of all cancer deaths in the United States [8]. Thoracic CT

imaging is a valuable noninvasive technique for the diagnosis and treatment planning

of lung cancer. Accurately assessing the local and global lung biomechanics from the

image data is very important, and the registration of lung images at different phases of

the breathing cycle plays a vital role in accurately describing respiratory motion.

The accurate estimation of respiratory motion has widespread applications, in particu-

lar, radiation therapy of lung cancer. In this application, the estimation of organ deforma-

tions during treatment impacts dose calculation and treatment decisions [9, 10, 11, 12]. The

current state-of-the-art radiation treatment planning involves the acquisition of a series of

respiratory correlated CT (RCCT) images to build four-dimensional (4D) (three spatial and

one temporal) treatment planning datasets. Having imprecise knowledge of the tumor

location leads to underradiation of the tumor while depositing damaging radiation in the

surrounding healthy tissue.

The estimation of breathing motion is a challenging problem as the deformations are

highly nonlinear. Inflexible motion models, such as rigid and affine transformations, fail to

accurately represent complex biological deformations. Overly flexible models, on the other

hand, overfit noisy images with nonsmooth and physiologically implausible deformations.

The current state-of-the-art practice is to use the large deformation diffeomorphic metric

mapping (LDDMM) framework, which uses a viscous fluid-flow model of these deforma-
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tions [13, 14, 15, 16]. However, a simple fluid-flow model of lung motion is inadequate

for the simple reason that the human body does not deform as a homogeneous material.

During respiration, the lungs expand and contract as gas exchanges with the environment,

while the rest of the body undergoes an incompressible deformation. The tissue surround-

ing the lungs consists of bone, fat, and soft tissue, all of which are incompressible tissues.

Therefore, we expect the deformations in lung tissue to be highly compressible while the

rest of the body has incompressible deformations. These physiological attributes are not

modeled in LDDMM.

LDDMM also does not model the X-ray physics in CT imaging. In standard LDDMM,

the action of a deformation on an image is the L2 action, that is, it acts via function compo-

sition. In CT imaging, the image intensities correspond to the linear attenuation coefficient,

or the ability of a material to absorb and scatter X-rays. A material’s linear attenuation co-

efficient is directly related to its mass density. Therefore, instead of viewing this estimation

problem as an image matching problem, it is best viewed as a density matching problem.

These two improvements to deformable registration are significant contributions to motion

estimation in thoracic CT imaging.

1.4 Main Contributions

The main contributions of this dissertation for estimating motion in CT imaging are

organized into the following three chapters.

1.4.1 Chapter 2

A method for 3D cone-beam CT reconstruction for mobile C-arms is introduced. Cur-

rent methods for cone-beam CT reconstructions assume a stable and well-known geometry

of the imaging system. The hardware of mobile C-arms is considerably less geometrically

robust than fixed-room C-arms. Therefore, the introduced method includes the estimation

of the motion of the C-arm as well as the estimation of the underlying 3D image. This joint

estimation of the image and the geometry is done in an alternating scheme, where the

image is estimated in the expectation maximization (EM) framework and the geometry is

estimated using a gradient-based energy minimization scheme to improve the correspon-

dence between the acquisition data and estimated 3D image. This work is an expansion of
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the work done in Rottman et al. [17] and Rottman et al. [18].

1.4.2 Chapter 3

This chapter provides analysis on the mass-preserving nature of thoracic CT images.

Although image intensities in CT should be theoretically conserved, I show that in real

thoracic CT datasets, the assumption of conservation of mass is not valid. However, I pro-

vide a method to transform these CT images into objects that are indeed mass preserving,

and show the approach is applicable across multiple patient datasets acquired on the same

CT scanner. This work is an expansion of the work done in Rottman et al. [19].

1.4.3 Chapter 4

A new method for thoracic CT image registration is introduced. The proposed diffeo-

morphic model acts on densities, thereby ensuring that the deformations preserve mass.

These deformations are regularized by a locally-varying penalty on volume change. In in-

compressible areas of the body (including surrounding soft tissue and bones), the volume

change is restricted. In much more compressible areas of the image (such as the lungs),

the method allows considerable compression and expansion. The resulting algorithm

is computationally efficient and accurately models respiratory motion. This work is an

expansion of the work done in Rottman et al. [19] and Rottman et al. [20].

Finally, in Chapter 5, I discuss these contributions as well as the possibility for future

work in these areas.
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CHAPTER 2

JOINT CONE-BEAM RECONSTRUCTION

AND GEOMETRY ESTIMATION FOR

MOBILE C-ARMS

This chapter deals with the problem of X-ray CT reconstruction in the presence of

uncertain system motion. In this case, the object being imaged is assumed to be stationary

and the system motion is estimated during reconstruction. Although it is developed and

tested with mobile C-arms, it is applicable to any cone-beam system that has uncertain

motion.

2.1 Introduction

Mobile fluoroscopic C-arms are popular imaging systems that produce 2D X-ray im-

ages in real-time. However, 3D cone-beam tomographic reconstruction is mostly limited

to larger, more expensive systems, such as fixed-room C-arms, isocentric C-arms, and

O-arms. Since most mobile C-arms are inherently designed 2D imaging, the geometry

of the acquisition scan is irregular and uncertain, so traditional cone-beam reconstruc-

tion techniques such as Feldkamp, Davis, and Kress (FDK) [1] do not work. In addition

to geometric irregularities, mobile C-arms exhibit other non-ideal characteristics for 3D

reconstruction, including nonisocentricity and limited angle coverage. Large isocentric

C-arms and fixed-room C-arms have been developed that have much more consistent

geometry, but smaller mobile C-arms traditionally have no need for such precision and are

often moved by hand or by an imprecise internal motor. An acquisition sweep puts strain

on the C-arm gantry, further decreasing the certainty of the geometry of an acquisition

path. Image reconstruction with incorrect parameters yields poor image quality with

miscalibration artifacts, so 3D computed tomography (CT) on mobile C-arms is currently

limited.

Methods for geometric calibration of cone-beam CT systems can be divided into two
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categories: offline calibration and autocalibration. Offline calibration methods correct for

inconsistencies in the system geometry before the scanner is used in a clinical application.

These methods are often necessary for fixed-room C-arms. Even though these systems

have much more geometric certainty, these scanners typically need to undergo periodic

calibration due to changes in geometry over the life of the scanner. This offline calibra-

tion is usually done using specifically designed calibration phantoms [2, 3, 4, 5]. These

methods use precisely manufactured phantoms with high-attenuation markers and then

analytically fit ellipses to the projection data. In these methods, the ground truth 3D image

(calibration phantom) is well known, and the scan geometry is estimated using this prior

knowledge. These methods are not viable for mobile C-arms, as much of the scanner

geometry in mobile C-arms is not consistent between consecutive scans.

Autocalibration methods, on the other hand, estimate the true geometry on-the-fly us-

ing image-based updates. Some proposed methods use only the sinogram data of circular

scans for autocalibration to estimate a subset of the geometric parameters [6, 7]. Kyriakou

et al. use only the reconstructed image and seek to minimize its entropy with respect to the

geometric parameters [8].

Finally, some methods use both the reconstructed image and the projection data and

perform a 2D-3D registration between them. The proposed method fits into this category.

Muders et al. use FDK reconstruction for a helical cone-beam system where they optimize

over a 3D translation and 1D rotation by sampling along each of the four dimensions inde-

pendently [9]. Bodensteiner et al. interleave ART image updates and parameter updates

using a Hooke-Jeaves search to maximize mutual information. Similarly, Wein et al. use

SIRT image updates with an amoeba direct search method to minimize the L1 error [10]. In

contrast, the proposed method implements the gradient with respect to all the geometric

parameters, and then uses an expectation maximization (EM) image reconstruction frame-

work that allows for a joint estimation of the geometry and the 3D image. For the geometry

update, I implement the gradient of the normalized cross-correlation between the current

estimate of the 3D image and the 2D projection data, which allows for any number of

gradient-based optimization schemes.

In this chapter, I propose a method for 3D reconstruction in the presence of uncertain

geometry. Instead of trying to get more precise geometry by expensively improving the
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hardware, I simultaneously estimate the geometry and the 3D image. I have implemented

the proposed method on the GPU. The results show that the geometric parameters are

accurately estimated, and the resulting reconstruction images are free of miscalibration

artifacts. The proposed method also does not require an isocentric trajectory, which does

not exist in many mobile C-arms.

This method can be used to retrofit existing mobile C-arms with 3D imaging. In this

case, the only added cost is in computation. Furthermore, the proposed method can be

used with existing sensor data or with an a priori estimate of the acquisition scan, thereby

improving the given geometry estimates.

2.2 Cone-Beam Reconstruction

2.2.1 X-ray Attenuation

The total attenuation of a narrow X-ray beam through a material is described by the

Beer-Lambert law. Given an X-ray beam with intensity i0 passing through a material, the

attenuated X-ray intensity id recorded at a detector element is

id = i0 exp

(

−
∫

l
µ(x′)dx′

)

, (2.1)

where µ(x) is the linear attenuation coefficient at a location on the path, and this line

integral is from the X-ray source to the detector element. The main challenge associated

with CT reconstruction is solving for µ(x) given many detector recordings. By taking the

natural log of both sides, we get an expression for the line integral:

ln(i0)− ln(id) =
∫

l
µ(x′)dx′. (2.2)

With this log transform, the X-ray system can be written as a linear system. Essential

to describing this system is the knowledge of the precise locations of each of these line in-

tegrals. These locations at a point in time are described by the imaging system’s geometric

parameters. In order to define these geometric parameters in cone-beam systems, I will

first define the applicable coordinate systems and the rigid transformations among them.

2.2.2 Cone-Beam Geometry

A point in space is described by its world coordinates, x = (x, y, z) ∈ R
3. This coordinate

system is fixed and the reconstructed 3D image I(x) of linear attenuation coefficients is

defined in world coordinates.
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The imaging system has a point X-ray source and a 2D X-ray detector that is assumed to

be flat. A point in space is also described by its camera coordinates, x′ = (x′, y′, z′) ∈ R
3. The

X-ray source is located at point x′ = (0, 0, 0) in this coordinate system. The distance from

the source to the detector is l ∈ R
+, called the source-to-image-detector distance or SID. The

unique point on the detector plane that is closest to the source is called the piercing point.

The positive z′ axis passes through the piercing point and is therefore orthogonal to the 2D

detector plane. In camera coordinates, the piercing point is located at (x′, y′, z′) = (0, 0, l).

A point on the detector plane is described by its projection coordinates, u = (u, v) ∈ R
2.

The piercing point is denoted as the point (u0, v0). The u and v axes have the same

directions and scales as the x′ and y′ axes, respectively. Therefore, the point (u, v) in

projection coordinates is the point (u− u0, v− v0, l) in camera coordinates. The piercing

point and SID are called the intrinsic parameters, which define the relationship between

projection coordinates and camera coordinates. These parameters describe the relative

alignment of the X-ray source and detector. Any nonrigid deformation of the C-arm gantry

is reflected by a change in intrinsic parameters.

The transformation between camera coordinates and world coordinates is a rigid trans-

formation in R
3. I represent this transformation by a rotation matrix R ∈ O(3) combined

with a translation T ∈ R
3, where O(3) is the orthogonal group of 3D rotation matrices. For

any two matrices R0, R1 ∈ O(3), |Ri| ∈ {1,−1}, R−1
i = RT

i , and R0R1 ∈ O(3), where the

group action is matrix multiplication. I define this rigid transformation between a point p′

in camera coordinates and the same point p in world coordinates as

p = R(p′ + T). (2.3)

This rotation can either be orientation preserving (|R| = 1) or orientation reversing

(|R| = −1). This choice is based only on convention and will be consistent throughout

the scan. The 3D rotation and 3D translation together are called the extrinsic parameters.

The 3D image I(x) defined in world coordinates can be equivalently described by camera

coordinates:

I(x) = I(R(x′ + T)) = I′(x′). (2.4)

The extrinsic and intrinsic parameters uniquely describe the system geometry at a point

in time and are together represented as θ, consisting of nine scalar parameters (three
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for translation, three for rotation, two for piercing point, and one for SID). These three

coordinate systems are illustrated in Figure 2.1.

2.2.3 Projection and Backprojection Operators

The 2D projection image P{I; θ} evaluated at a point (u, v) is defined as the line integral

of linear attenuation coefficients of I(x) from the X-ray source to the point u = (u, v) on the

detector. In camera coordinates, this is the line integral from (0, 0, 0) to (u− u0, v− v0, l).

This line integral path is parameterized by s ∈ [0, 1] and written in camera coordinates as

p′(s) = (s(u− u0), s(v− v0), sl) . (2.5)

The length of this integral path is

γ(u, v; u0, v0, l) :=
√

(u− u0)2 + (v− v0)2 + l2 . (2.6)

Given the intrinsic and extrinsic parameters, the projection operator P : L2(R3) →
L2(R2) is

u0

v0

u

v

x

y

z

y’

x’
z’

source

l

Figure 2.1. Cone-beam coordinate systems: world coordinates (x, y, z), camera coordinates
(x′, y′, z′), and projection coordinates (u, v). In this setup, the rotation between world and
camera coordinates is orientation reversing (by convention). The piercing point is the point
(u0, v0) in the detector plane and the source-to-image-detector distance (SID) is l.
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P{I; θ}(u) = γ
∫ 1

0
I′(p′(s)) ds (2.7)

= γ
∫ 1

0
I(R(p′(s) + T)) ds. (2.8)

Since the projection operator is linear with respect to I, it has an adjoint P† : L2(R2)→
L2(R3). This adjoint is called the backprojection operator and operates on a 2D projection

image. Given any image I(x) ∈ L2(R3) and any image on the detector f (u) ∈ L2(R2), the

adjoint relationship is

〈

P{I; θ}(u), f (u)
〉

L2(R2)
=
〈

I(x), P†{ f ; θ}(x)
〉

L2(R3)
. (2.9)

This backprojection operator (here defined in camera coordinates) is

P†{ f ; θ}(x′) =

(
l

z′

)2 ‖x′‖
z′

f
( x′l

z′
+ u0,

y′l
z′

+ v0

)

. (2.10)

The backprojection operator evaluated at a point x′ is the value of f at the point u,

where u is the point on the detector that is on the same line connecting the source and x′.

This value is then weighted by the inverse of the squared distance from the source to x′ to

account for the diverging line integrals.

2.2.4 Iterative Cone-Beam Reconstruction

Although analytical methods such as filtered backprojection (i.e., Feldkamp et al. [1])

are widely popular for cone-beam reconstruction, algebraic and statistical methods have

shown greatly improved reconstruction images that allow for nonstandard geometries and

noisy data [11]. Iterative reconstruction methods can essentially be divided into two cate-

gories: algebraic reconstruction and statistical reconstruction. Algebraic methods seek to

solve a linear system describing the imaging system. In contrast, statistical methods model

noise characteristics and allow for prior information to be incorporated in the estimation.

This section reviews some of the most popular methods for iterative CT reconstruction and

discusses their properties.

2.2.4.1 Algebraic Reconstruction

In the previous section, I defined the projection and backprojection operators for the

cone-beam system analytically. More generally, any X-ray system (including cone-beam,

fan-beam, or parallel beam) can be described by a series of line integrals through a volume,
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and these line integrals are linear with respect to the 3D volume (see Equation 2.2). View-

ing this problem from a discrete standpoint, the entire dataset can be written as a linear

system of equations. The unknown 3D image (with N unknown voxel values) is written

as yk, and the data (with M total detector pixel recordings) are written as bi. Therefore,

yk is the vectorized discrete version of I(x), and bi is the vectorized discrete version of the

full detector data, { f ∗j }. The forward projection model is written as the N ×M matrix Aik,

called the system matrix, so the linear system is modeled as

∑
k

Aikyk = bi , (2.11)

where an element of Aik describes the contribution of the kth voxel to the ith line integral

(defined by the interpolation scheme used for the numerical integration). A single line

integral passes through only a select number of voxels, so Aik is a sparse matrix, and each

element is nonnegative. Note that this matrix describes all the line integrals for all the

projection images simultaneously. This matrix is very large, and thus a direct solution to

Equation 2.11 is infeasible. Therefore, algebraic reconstruction schemes attempt to solve

this linear system iteratively, and typically do so using a Landweber scheme, which is a

special case of gradient descent.

The very first method for CT reconstruction, introduced by Gordon et al. in 1970,

is called the algebraic reconstruction technique (ART) [12], which is equivalent to the

Kaczmarz method [13]. This iterative method was introduced even before filtered back-

projection, which was introduced by Shepp and Logan in 1974 [14]. The ART image update

is

yn+1
k = yn

k + ∑
i

AT
ik

(

bi −∑k′ Aik′y
n
k′

∑k′ A2
ik′

)

. (2.12)

Here, the transpose of the system matrix is the total backprojection operator. The image

is updated one pixel measurement (one row of Aik) at a time; that is, after M sequential

updates, ART has finished a single iteration through all the projection data. Because of the

sequential nature of this algorithm, it is not well suited for parallelization on GPUs.

An improvement to ART is the simultaneous iterative reconstruction technique (SIRT)

[15, 16]. In SIRT, the 3D image is updated only after going through the entire dataset. This

image update is

yn+1
k = yn

k +
ω

A+k
∑

i

AT
ik

(
bi −∑k′ Aik′y

n
k′

Ai+

)

(2.13)
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where

Ai+ =
N

∑
k

Aik (2.14)

and

A+k =
M

∑
i

Aik (2.15)

are the column sums and row sums, and ω is the relaxation term, typically set to one. Each

sum over k is the full projection operator and each sum over i is the full backprojection

operator. A+k can be thought of as a full projection applied to a 3D image of ones, and

Ai+ can be thought of as a full backprojection applied to 2D images of ones. Assuming

that every ray passes through the volume and every volume voxel is intersected with at

least one ray, we have A+k > 0 for all k and Ai+ > 0 for all j. The SIRT image update can

then be written in matrix notation. Defining R as the N × N diagonal matrix with values

of Rii = 1/Ai+ and C as the M×M diagonal matrix with Ckk = 1/A+k, Equation 2.13 is

then equivalently written as

yn+1 = yn + ωCATR(b− Ayn), (2.16)

where C and R are both positive definite diagonal matrices. This algorithm attempts to

minimize the weighted least squares problem

L(y) = ‖b− Ay‖2
R = (b− Ay)TR(b− Ay). (2.17)

The gradient of L with respect to the image y is

∇yL(y) = ∇y

(

(b− Ay)TR(b− Ay)
)

(2.18)

= −2ATR(b− Ay). (2.19)

This last step is just an application of the chain rule: by defining c = b − Ay, we have

∇yc = −AT and ∇ccTRc = 2Rc, so the total gradient is ∇yL = ∇yc∇cL. Equation 2.16 is

then rewritten as

yn+1 = yn − ω

2
C∇yL(y). (2.20)

This update is a form a gradient descent where the gradient is scaled by ω
2 C. It can easily

be seen that L is convex. By weighting the gradient by this positive definite matrix, this

update has been shown to monotonically converge to the weighted least squares solution
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given that ω ≤ 1 (see [17, 18] for details). This weighted least squares solution is the

maximum likelihood estimate (MLE) for a Gaussian noise model.

Despite these appealing theoretical convergence properties, SIRT has a relatively slow

convergence since it updates only once after going through all the projection data. To

speed up convergence, the simultaneous algebraic reconstruction technique (SART) was

introduced [19]. SART has the same update equation as SIRT, but the image is updated

after using a single projection. SART is parallelizable over a single projection image and

converges very quickly in low noise data, but it is not guaranteed to converge to the MLE,

which is especially problematic with inconsistent data (including high noise data).

There have been attempts to design an algorithm that incorporates both the fast “con-

vergence” of SART and the stability of SIRT. One attempt is to use SART updates, but

strongly underrelax (i.e., use a much lower value of ω [19]). Another such method is to

update the image over disjoint ordered subsets of the data, which is called OS-SIRT [20] or

OS-SART [21] (the terms are used interchangibly), where OS stands for ordered subsets.

The image updates of SIRT, OS-SIRT, and SART can all be written generally as

I(x) 7→ I(x) +
ω

∑j∈S P†
j {1(u)}

∑
j∈S

P†
j

{
f ∗j (u)− Pj{I(x)}

Pj{1(x)}

}

. (2.21)

Here, S is the current subset, 1(u) is a 2D projection image of all ones, and 1(x) is a 3D

volume of all ones. In the case of SIRT, there is only one subset consisting of all projections.

For SART, each subset contains a single projection image. For OS-SIRT, it is somewhere in

between. Note that in none of the ordered subset methods (except SIRT) is the algorithm

guaranteed to converge. However, OS-SIRT has been shown to exhibit large speedups in

practice due to the relative consistency in the projection data. The choice in the subset size

is a trade-off between convergence and speed, and more consistent datasets allow for a

faster reconstruction with smaller subsets.

2.2.4.2 Statistical Reconstruction

Statistical reconstruction allows for a more complex modeling of the projection system,

including a more accurate noise model as well as a prior belief of the reconstructed image.

One of the most well-known statistical reconstruction methods is expectation maximiza-

tion (EM) reconstruction.
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The standard EM image update, originally introduced for emission tomography by

Shepp and Vardi in 1982 [22], is a multiplicative update:

I(x) 7→ I(x)

∑j P†
j {1(u)}(x)

∑
j

P†
j

{ f ∗j
Pj{I}

}

(x) , (2.22)

where each image update is known as a Richardson-Lucy iteration [23]. These updates

converge to the maximum likelihood estimate (MLE) of the complete data with a Poisson

model at the detector elements [24]. The log likelihood with the Poisson model is

ℓ(yk|bi) = ∑
i

(

biln
(

∑
k

Aik

)

− ln(bi!)−∑
k

Aikyk

)

. (2.23)

The EM algorithm is a general framework for maximizing the posterior or likelihood

when some data are “missing”. These “missing” data are some unknown data that would

greatly simplify the estimation. In our case, the observed data bi are the weighted sum

of voxels along the line from the source to the detector. This sum of voxels inherent in

the integration makes the estimation difficult, so we write the missing data as zik: the

contribution of the kth voxel to the line integral measured at the ith detector element.

Then, the observed data are written as

bi = ∑
k

zik. (2.24)

Given the missing data, the maximum likelihood of yk is just the weighted average of the

missing data for each recording:

yk =
∑i zik

∑i Aik
. (2.25)

This is the M-step of the EM algorithm. The E-step is also straightforward. Here, the

conditional expectation of zik given the observed data bi is

zik =
bi Aikyk

∑k′ Aik′
. (2.26)

Combining the E-step and the M-step yields

yk =
∑i

bi Aikyk

∑k′ Aik′

∑i Aik
=

yk

∑i Aik
∑

i

bi Aik

∑k′ Aik′
, (2.27)

which is just Equation 2.22 written in its discrete form.

In transmission tomography, the detector data are essentially Poisson distributed [25].

Like the algebraic case, the detector data are log-transformed to get the line integrals of the
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attenuation (see Equation 2.2). This log-transformed data are neither Poisson nor Gaus-

sian distributed. However, EM reconstruction can be applied to solve any linear inverse

problem where the objection function is nonnegative and equivalently minimizes Csiszar’s

I-divergence [26, 27]. EM models for transmission have been introduced that maximize

the true log-likelihood of the transmission data given the Poisson model [28, 29], but they

converge very slowly [30] and are rarely used in practice. In these implementations, the

projection data do not form an exponential family, so the M-step cannot be completed in

closed form.

Unfortunately, the ML-EM algorithm (like other MLE algorithms) tends to amplify

noise by overfitting to the data [23, 31, 32]. To regularize the estimation, I use a Bayesian

reconstruction framework where I place a total variation (TV) prior on the 3D image:

U(I) =
∫

Ω
|∇I(x)| dx , (2.28)

and solve for the maximum a posteriori (MAP) estimate, which maximizes the log posterior

ln p(I| f ∗) ∝ ℓ(I| f ∗) + λU(I) , (2.29)

where λ is a scalar parameter that controls the strength of the TV penalty. Adding a prior

is very natural in the EM framework by using a “one-step-late” approximation proposed

by Green by adding the derivative of the TV penalty of the current estimate in the denom-

inator [33].

For the full EM implementation, I(x) is updated after summing over all the data. For

a faster convergence, the image is updated after summing over a single ordered (striated)

subset S, before iterating through all the subsets of the data [34] in the same way as the

algebraic case. The resulting algorithm is called ordered subset expectation maximization

(OSEM) reconstruction.

The OSEM image update with the TV prior is then

I(x) 7→ I(x)

∑j∈S P†
j {1(u)}(x) + λ ∂U(I)

∂I(x)

∑
j∈S

P†
j

{ f ∗j
Pj{I}

}

. (2.30)

Here ∂U(I)
∂I(x)

is the derivative of the TV penalty with respect to the image. I implement

the TV derivative in the same manner as [26], using the following stencil for ∂U(I)
∂I(x)

:



21

∂U(I)

∂I(x)
=

δx− I(x)

u(x− 1, ·, ·) +
δy− I(x)

u(·, y− 1, ·) +
δz− I(x)

u(·, ·, z− 1)

−
δx− I(x) + δy− I(x) + δz− I(x)

u(x)
, (2.31)

where

u(x) =
√

δx+ I(x)2 + δy+ I(x)2 + δz+ I(x)2 + ǫ2 , (2.32)

where δx+ and δx− are the partial derivatives solved by using forward and backward

differences, respectively, and ǫ is a very small number to ensure divisibility.

2.2.4.3 Analysis of Reconstruction Techniques

To compare these reconstruction techniques, I implemented SART (both nonrelaxed

and relaxed versions), OS-SIRT, SIRT, OSEM, and TV-OSEM. I used the public domain CT

dataset from the University of North Carolina (http://graphics.stanford.edu/data/

voldata/) to create a projection dataset simulated with Poisson noise. The ground truth

dataset as well as an example projection can be seen in Figure 2.2. This dataset was sim-

ulated with 250 equally-spaced projections over a 223 degree scan. I used 6402 projection

images and reconstructed a 2563 volume.

Since the intent of this section is to compare these reconstruction methods, the “static”

version of each reconstruction method is used; for each reconstruction method, the ground

truth geometric parameters were used, so there is no uncertain geometry in these experi-

ments.

Figure 2.2. Setup for the 3D reconstruction algorithm analysis. On the left is the ground
truth digital phantom. In the center is a projection simulated with Poisson noise. On the
right is the center projection image that has been log-transformed.
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The reconstructed images for each of the methods after 50 iterations are shown in

Figure 2.3. The L2 error between the reconstructed images and the ground truth image

at each iteration is plotted in Figure 2.4. Note that none of these methods are necessarily

expected to converge to the ground truth image. Rather, these methods seek to converge to

the MLE of the reconstruction given the data (or the MAP estimate in the TV-OSEM case).

However, the ground truth error gives insight into the accuracy of each reconstruction

method and how each method handles noisy data.

As previously mentioned, SIRT reconstruction converges very slowly. Since it is not

yet converged after 50 iterations, the SIRT reconstruction image is still overly smooth. The

SART reconstruction image is very noisy, and it did not converge to the maximum likeli-

hood estimate (as global convergence is not guaranteed in SART, especially for inconsistent

systems). The two techniques that attempt to have better stability than SIRT, yet still seek

SIRT SART SART-relax

OS-SIRT OSEM TV-OSEM

Figure 2.3. Algebraic and statistical reconstruction results for the six tested reconstruction
methods. Each method was run for 50 iterations. Each image is displayed using the entire
intensity range of the central axial slice. SART, SART-relax, and OS-SIRT all have negative
values in the reconstructed image.
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Figure 2.4. Convergence of the ground truth error for each of the reconstructed images,
log scale. TV-OSEM converges quickly and is closest to the ground truth solution. All
MLE methods converge to very noisy images, and the algebraic methods (which have no
positivity constraint) have significant noise in regions of the image close to zero.

to converge to the maximum likelihood estimate, are SART with relaxation (ω = 0.2), and

OS-SIRT (using 20 ordered subsets). In all the ordered subset cases, bit-reversal ordering

was used, which has been shown to improve convergence [35, 36]. Both relaxed SART

and OS-SIRT converged to the maximum likelihood estimate and did so much faster than

SIRT. In a separate experiment, SIRT was run for 2000 iterations. The resulting recon-

struction looks identical to the reconstructions from OS-SIRT and relaxed SART, as all

three converged to the maximum likelihood estimate. Therefore, the noise properties of

relaxed SART and OS-SIRT reconstructions are due to the fact that the maximum likelihood

estimate itself is very noisy.

The statistical methods (OSEM and TV-OSEM) were also implemented. OSEM con-

verges quickly but is still quite noisy inside the skull, whereas of all the methods, TV-OSEM

is by far the closest to the ground truth skull and looks most like the ground truth image.

All the maximum likelihood reconstruction methods produce noisy reconstructions by

overfitting to the data. However, one significant difference between the algebraic tech-

niques and OSEM is that OSEM naturally constrains the resulting reconstruction image to

be nonnegative, as all its updates are multiplicative. The algebraic techniques have signif-

icant noise in areas of the image close to zero due to negative values in the reconstruction.

The most computationally complex parts of these reconstruction techniques are the
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projection and backprojection operations, where the projection is the more complex of

the two. Each of these methods has one backprojection operation and one projection

operation per projection image. The projection of ones and the backprojection of ones

is a fast operation, since no interpolation is required. Therefore, each of these methods has

approximately the same computational complexity.

Overall, the maximum likelihood methods produce very noisy reconstruction results.

The Bayesian reconstruction method (TV-OSEM) by far produces the best results: fast

convergence, a reconstruction with minimal noise, and a reconstruction that is closest to

the ground truth volume. For the rest of this chapter, I will use TV-OSEM for the image

estimation.

2.2.5 Geometry Estimation

For each projection, I seek to minimize the mismatch between the projection data ( f ∗j )

and the associated projection operator applied to the current estimate of the reconstructed

volume (Pj{I; θ}). Non-ideal characteristics in real cone-beam data, such as X-ray scatter

and limited field of view, create non-uniform intensity changes that do not become realized

in the reconstructed image. Therefore, a local normalized cross-correlation (NCC) for the

geometry energy functional was used. Using NCC has the effect of matching structures in

the data to structures in the reconstructed image as opposed to strictly looking at intensity

differences.

The normalized cross-correlation between two images f (u) and g(u) is defined as the

cross-correlation between the mean-removed versions of f and g divided by their standard

deviations:

NCC( f , g) =

∫
( f (u)− µ f )(g(u)− µg)

√∫
( f (u)− µ f )2

√∫
(g(u)− µg)2

. (2.33)

To account for nonglobal intensity variations, I calculate these integrals over local re-

gions of locally mean-removed images. I define the locally mean-removed images f̄ (u) =

f (u)− k ∗ f (u), ḡ(u) = g(u)− k ∗ g(u), where k is a local normalized kernel (in my imple-

mentation, I use a Gaussian kernel). The local integration can be written as a convolution,

so the local NCC at a single point u is then
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NCC( f , g, u) =
k ∗ ( f̄ ḡ)

√

(k ∗ f̄ 2)(k ∗ ḡ2)
. (2.34)

The energy functional at a single projection is

Ej(θ) =
∫

Ωd

NCC(P{I; θ}, f ∗j , u) du, (2.35)

where Ωd is the 2D region defined by the image detector bounds. The first variation of this

energy functional with respect to the extrinsic and intrinsic parameters is

δEj(θ) =
∫

Ωd

∇θ NCC(P{I; θ}, f ∗j , u) du, (2.36)

where

∇θ NCC
(

P{I; θ}, f ∗j , u
)

=

(
k ∗ P̄2

)(
k ∗
(

f̄ ∗j ∇θ P̄
))
−
(
k ∗ P̄ f̄ ∗j

)(
k ∗ P̄∇θ P̄

)

(

k ∗ P̄2
)3/2√

k ∗ f̄ ∗2j

(2.37)

is just an application of the quotient rule, and

∇θ P̄ = ∇θ P{I; θ} − k ∗ ∇θ P{I; θ}. (2.38)

I now analytically solve for ∇θ P{I; θ}(u), the variation of the projection operator with

respect to the extrinsic and intrinsic parameters. In the rest of this section, this variation

is derived by solving for the variation of the translation, rotation, and intrinsic parameters

separately.

2.2.5.1 Extrinsic Parameter Derivatives

I first solve for the derivative with respect to the translation parameter using the chain

rule:

∂

∂T
P{I}(u) = γ

∫ 1

0

∂

∂T
I(R(p′(s) + T)) ds (2.39)

= γ RT
∫ 1

0
(∇I)(R(p′(s) + T)) ds. (2.40)

Once again, γ = γ(u, v; u0, v0l) is the length factor defined in Equation 2.6.

The derivative with respect to R is slightly more complicated because I must constrain

R to O(3). The update of R is written as an orientation preserving rotation applied to the

left of R. These orientation preserving 3D rotation matrices form the special orthogonal

group, SO(3). The tangent space of SO(3) at identity is so(3), the space of skew-symmetric
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matrices. The exponential map exp : so(3) → SO(3) is the matrix exponential, where the

matrix exponential of any skew-symmetric matrix is guaranteed to be a rotation matrix.

For any square matrix W, W −WT is a skew-symmetric matrix. The rotation update is

then written as:

R 7→ exp(W −WT)R. (2.41)

We now have an unconstrained optimization over W while assuring that R remains in

O(3). I then solve for the Fréchet variation of the projection operator:

〈 ∂

∂R
P{I}(u),W

〉

Frob
=

d

dǫ

∣
∣
∣
∣
ǫ=0

γ
∫ 1

0
I
(

exp
(
ǫ(W −WT)

)
R
(

p′(s) + T
))

ds.
(2.42)

Using the chain rule, we have

d

dǫ
exp(ǫ(W −WT)) = (W −WT)exp(ǫ(W −WT)), (2.43)

and then
d

dǫ

∣
∣
∣
∣
ǫ=0

exp(ǫ(W −WT)) = (W −WT). (2.44)

Using this with the chain rule on Equation 2.42 and evaluating the derivative at ǫ = 0, we

have

〈 ∂

∂R
P{I}(u), W

〉

= γ
∫ 1

0
(∇I)(R(p′(s) + T))T(W −WT)R(p′(s) + T) ds. (2.45)

For ease of notation, I introduce two vectors w := (∇I)(R(p′(s) + T)) and v :=

R(p′(s) + T), so the previous equation is written as

〈 ∂

∂R
P{I}(u), W

〉

= γ
∫ 1

0
wT(W −WT)v ds. (2.46)

I then use the following identity of the Frobenius inner product:

wT Av = 〈wvT, A〉Frob. (2.47)

Equation 2.46 becomes

〈 ∂

∂R
P{I}(u), W

〉

= γ
∫ 1

0
〈wvT, W −WT〉 ds (2.48)

= γ
∫ 1

0
〈wvT − vwT, W〉 ds. (2.49)
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The last step is just an expansion of the inner product (vwT = (wvT)T). Here wvT − vwT

is a skew-symmetric matrix, so the integrand is transformed via the star map

wvT − vwT = ∗(w× v), (2.50)

where the star is the standard mapping between so(3) and R
3:





0 −c b
c 0 −a
−b a 0




∗
⇄





a
b
c



 . (2.51)

Then, I write the derivative as a vector in R
3:

∂

∂R
P{I}(u) = γ

∫ 1

0
w× v ds (2.52)

= γ
∫ 1

0
(∇I)(R(p′(s) + T))× R(p′(s) + T) ds. (2.53)

Given an update vector b ∈ R
3, the update of R by b is

R 7→ exp(∗b)R. (2.54)

I apply the rotation update by calculating the exponential map in closed form using Ro-

drigues’ rotation formula. Setting α = ‖b‖ and b̂ = b/‖b‖, I have

R 7→
(
I + sin(α) ∗ b̂ + (1− cos(α))(b̂b̂T − I)

)
R. (2.55)

2.2.5.2 Intrinsic Parameter Derivatives

I now find the derivatives with respect to the piercing point and SID. For simplicity, the

intrinsic parameters are combined into a single vector τ = (u0, v0,−l). In this notation,

the integral path is

p′(s) = s(u− u0, v− v0, l) = s((u, v, 0)− τ) (2.56)

and its derivative is
∂

∂τ

p′(s) = −s. (2.57)

The length factor γ can be rewritten as

γ(u, v; τ) = ‖(u, v, 0)− τ‖ (2.58)

and its derivative is
∂

∂τ

γ(u, v; τ) =
−((u, v, 0)− τ)

‖(u, v, 0)− τ‖ . (2.59)
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Since γ and the line integral are both functions of the intrinsic parameters, I solve for

the derivative of P{I; θ}(u) using the product rule:

∂

∂τ

γ
∫ 1

0
I(R(p′(s) + T)) ds =

−((u, v, 0)− τ)

‖(u, v, 0)− τ‖2
P{I}(u, v)− γ(u, v; τ)RT

∫ 1

0
s(∇I)(R(p′(s) + T)) ds. (2.60)

The evaluation of the gradients with respect to all geometric parameters requires inte-

grating the following:

I(R(p′(s) + T)) (2.61)

(∇I)(R(p′(s) + T)) (2.62)

(∇I)
(
(R(p′(s) + T))× (R(p′(s) + T))

)
(2.63)

s(∇I)(R(p′(s) + T)). (2.64)

The variations solved for in Equations 2.40, 2.53, and 2.60 are then individually plugged

into Equation 2.38. The local normalized cross-correlation gradient is then integrated over

(u, v) ∈ Ωd (the bounds of the detector) as shown in Equation 2.36, yielding a vector in R
9.

2.2.6 Implementation

I now describe the final algorithm for joint image and geometry estimation, as shown

in Algorithm 1. For each subset of the projection data, I apply the multiplicative OSEM

update as in Equation 2.30. Then, after all subsets apply their updates, I estimate all the

geometric parameters using a gradient ascent with a line search using Brent’s method. I

repeat these updates until both the reconstructed image and geometric parameters con-

verge.
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Algorithm 1 Joint Reconstruction and Geometry Estimation

Divide data into k ordered subsets:
{(0, k, 2k, ...), (1, k + 1, 2k + 1, ...)...}

I(x)← 1
for i = 0...numIters do

for S in subsets do

Perform OSEM update for the current subset
end for

for projection j in all projections do

Calculate parameter derivatives for f ∗j
Update geometric parameters of f ∗j

end for

end for

For the projection operator (Equation 2.8), I implement a single line integral for each

detector element by ray-marching through I(R(p′(s)+ T)) and evaluating the line integral

at the points where the path intersects the faces of the image voxel grid (and only the

intersections that are most perpendicular to the path). By doing this, I only need to perform

bilinear interpolations of the 3D image. Otherwise, I would be interpolating at the voxel

grid interior, requiring a more costly trilinear interpolation at each point on the path.

For the backprojection operator (Equation 2.10), I implement a voxel-based backprojec-

tion, where I perform a bilinear interpolation on the projection grid. This is not the numer-

ical adjoint of the projection operator, but is considerably faster than a projection-splatting

backprojection. Using mismatched projection and backprojection operators is supported

in the literature [37] and has even been shown to improve convergence [38].

Evaluating all the integrals for the parameter gradients (Equations 2.62-2.64) requires

integrating through ∇I. This line integral is implemented using a fixed step size ray-

marching, and (∇I)(R(p′(s) + T)) is evaluated at each location using central differences

while simultaneously evaluating I(R(p′(s) + T)). Computing the gradient on-the-fly has

the advantage of having a much smaller memory footprint than precomputing ∇I, which

is especially advantageous for GPU implementation where memory is limited.

Since iterative reconstruction algorithms often have limited field of view edge artifacts

in the reconstructed image, I only evaluate the gradient integrals on the interior of the

reconstructed image, which I define as locations in the 3D image where 90% of the projec-

tions pass through.



30

I implement the algorithm in a multiscale scheme, where I downsample the projec-

tion data and reconstructed volume by factors of 4, 2, and 1, keeping the estimate of the

geometric parameters after each scale.

2.3 Results

I have joint reconstruction and geometry estimation results for four datasets using

three different mobile C-arm systems. For the first dataset, I used orientation data from

electromagnetic sensors attached to a C-arm and artificially created a projection dataset

using these parameters as ground truth. With these ground truth parameters and a ground

truth 3D image, I can compare the reconstruction results quantitatively. For the three

remaining datasets, I used real projection data from mobile C-arms absent any ground

truth 3D image. I compare results with a static TV-OSEM reconstruction and my joint

reconstruction method, and visually compare the final reconstructions.

2.3.1 Ground Truth Geometric Parameters

The first dataset used tracking data during an orbital scan using a GE-OEC 9800 mobile

C-arm with an image intensifier. A pair of electromagnetic position and orientation sensors

were placed on the C-arm detector and the operating table. During a C-arm sweep, the

orientation and displacement between the moving C-arm detector sensor and the fixed

table sensor were measured. The location of the source and the intrinsic parameters for

each projection were derived using a calibration target attached to the detector using

precision high-attenuation markers [39]. This scan consisted of 144 acquisitions spaced

1 degree per frame, yielding a limited-angle scan.

Since there is no ground truth volume for this dataset, I used the previously mentioned

digital skull phantom and simulated projections. The projection images were created

using the given parameter values and were simulated with Poisson noise before being

log-transformed.

I reconstructed this dataset in three scenarios: given the ground truth parameters,

given nominal parameters with no geometry estimation, and given the nominal param-

eters while jointly estimating the geometry. The nominal trajectory was made by creating

a circular trajectory approximating the true trajectory and using equally-spaced gantry
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rotations. The reconstruction images of these experiments are shown in Figure 2.5. The

reconstructed image without geometry estimation (given a nominal trajectory) is unrec-

ognizable, whereas the reconstructed image with geometry estimation has image quality

comparable to the scan given true parameters. The L2 error between the reconstruction

and the original ground truth image is 10.5 for the ground truth parameters, 233.2 for the

nominal parameters, and 13.0 for the joint reconstruction given the nominal parameters.

I also evaluated the accuracy of the estimated parameters. Figure 2.6 shows the ground

truth, nominal, and estimated acquisition paths. In Figure 2.7, I quantified the accuracy of

the estimated extrinsic parameters in contrast to the nominal parameters. Although I am

optimizing over two separate objective functionals (log posterior for the image update, and

NCC for geometry update), they both converge after 50 iterations (shown in Figure 2.8).

The change in the reconstructed image is imperceptible after about 25 iterations, so in

practice the algorithm is stopped then.

As a preprocessing step for the joint reconstruction, I performed an initial estimate of

the translation in the x′ and y′ directions by performing a normalized cross-correlation 2D

registration of consecutive projection images. Since the X-rays are divergent, the resulting

translation is multiplied by z′/l for the initial estimates of Tx′ and Ty′ . This preprocessing

step leads to a more stable and faster convergence, since this 2D registration is considerably

faster than integrating through ∇I.

In all three scenarios, I reconstructed a 2563 volume using 6402 projection images.

The static OSEM reconstructions (without parameter estimation) took approximately two

minutes to complete, whereas the reconstruction with pose estimation took approximately

four minutes on a single Titan Z GPU.

2.3.2 Real C-arm Data

2.3.2.1 Physical Phantoms

The second and third datasets were acquired using a GE-OEC 6800 mobile C-arm ex-

perimentally retrofitted with improved acquisition and control components. The original

low-watt monoblock was replaced with a pulse-capable high-power source block, and

the image intensifier was replaced with a flat-panel detector. The acquisition scan of

this retrofitted system is nearly isocentric. Although it has improved tube and detector
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Figure 2.5. 3D reconstruction using digital skull phantom and ground truth geometric
parameters (axial, sagittal, and coronal slices). Top row: static reconstruction with ground
truth parameters. Middle row: static reconstruction with nominal parameters. Bottom
row: joint image and geometry estimation given nominal parameters. Both the top and
bottom results show limited angle artifacts, but the image quality of the ground truth
parameter dataset and the geometry estimation dataset are comparable.
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Figure 2.6. Cone-beam acquisition paths. The X-ray source of the C-arm follows the path
along the blue curve, each red line shows the path from the X-ray source to the center
of the detector, and the box represents the bounds of the reconstruction region. Upper
left: 3D view of the ground truth acquisition path including the reconstruction region and
the detector. Upper right: 2D plane of the ground truth acquisition path. Lower left: 2D
plane of the nominal (given) path. Lower right: 2D plane of the estimated path (given the
nominal path).
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Figure 2.7. Nominal trajectory error and estimated geometry error for all 144 projections.
From top to bottom, I show the x, y, and z world coordinate translation error (in mm)
and the rotation error between neighboring rotation matrices (in degrees). The proposed
method accurately estimates the true parameters. For the rotation estimation, I plot the
error between the ground truth rotation step (rotation difference between neighboring
acquisitions) and the estimated and nominal rotation steps. Note that if we have a global
rotation or a global translation represented in all the parameters, we would reconstruct an
identical image that is a rotated version or translated version of the true image. Therefore,
I remove the global translation and rotation when evaluating these results.
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Figure 2.8. Joint reconstruction convergence of the two objective functionals. The top
plot is the convergence of the log posterior (for the image updates). The bottom plot is
the convergence of the average NCC (for the geometry updates). Both functionals have
converged after 50 iterations.

components, the geometric parameters are still considered approximate. Even so, the

nominal scan is much closer to the true scan than the other scenarios in this chapter.

Because of this, the nominal reconstruction has only moderate miscalibration artifacts.

Orbital scans of a knee and a skull phantom were acquired. Both physical phantoms

consist of cadaver bones encased in plastic. There are no given geometric parameters for

this dataset, so I created a nominal projection scan using the nominal SID, assuming an

isocentric scan, estimating the angular range visually, and using equally-spaced rotations.

I compared results from a static OSEM reconstruction to the joint reconstruction and

geometry estimation method. These reconstruction results are in Figure 2.9. The proposed

method eliminates miscalibration ghosting artifacts that exist in the static reconstruction.

The knee dataset consists of 274 7562 projection images with an approximately 274

degree scan. The skull phantom dataset consists of 342 6002 projection images with an

approximately 196 degree scan. I performed the final reconstruction on a 5123 grid. Both

of the static reconstructions took approximately 10 minutes, and the reconstructions with

geometry estimation took approximately 16 minutes.
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Figure 2.9. Knee (left two columns) and skull (right two columns) physical phantoms
reconstruction results. The top row consists of OSEM reconstruction without any geometry
estimation. Both reconstructions exhibit ghosting artifacts where a structure appears twice
in the reconstruction due to miscalibration. In particular, double edges exist on the front
of the femur and back of the tibia in the knee phantom and around the skull boundary and
the vertebrae on the skull phantom. The bottom row shows the OSEM reconstruction with
geometry estimation. In these reconstructions, the ghosting artifacts are eliminated.
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2.3.2.2 Cadaver Dataset

The final dataset was acquired from a developmental full-size mobile C-arm with a flat

panel detector. An approximately 190 degree scan was acquired around a cadaver hand.

Similar to the first dataset, an electromagnetic sensor was placed on the detector, giving an

approximation of the geometric parameters.

I performed three reconstructions: static OSEM using the parameter values from the

sensors, static OSEM given nominal parameters, and the proposed joint reconstruction

method given the nominal parameters. The nominal parameters were created in the same

way as the first dataset: a circular trajectory with evenly spaced rotations was used and

the initial estimates of Tx′ and Ty′ were pre-estimated. Once again, the proposed method

produced reconstructed images that are of similar quality to reconstruction given the geo-

metric parameters from the sensors. These results can be seen in Figure 2.10.

This acquisition scan consisted of 179 15362 projection images spaced at one degree.

The static reconstruction took approximately 15 minutes and the reconstruction with ge-

ometry estimation took 24 minutes.

2.4 Discussion

The joint image and geometry estimation problem is certainly not a convex problem.

As such, it is always a concern for the estimation to converge in a local minimum. This

issue is mitigated by estimating the geometric parameters at lower resolutions in the mul-

tiscale scheme, which helps the method find global mismatch first and then converge to

smaller detailed mismatch. Furthermore, the most computationally expensive part of the

algorithm is computing the line integrals of the gradient image and performing the 2D con-

volution. I typically then perform a static reconstruction at the final high-resolution scale

and perform geometry estimation at the lower-resolution scales. For these two reasons,

the multiscale formulation is essential to both the convergence and speed of the proposed

method. However, global convergence is not guaranteed, and a somewhat reasonable

initial estimate of the geometric parameters is required.

Although the geometry of a cone-beam system at a point in time is uniquely described

by nine parameters, small variations in intrinsic parameters can be approximated by a

change in the extrinsic parameters. For example, a small positive change in the piercing
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Figure 2.10. Hand cadaver reconstruction results. Top row: OSEM reconstruction with
electromagnetic sensor data without geometry estimation. Middle row: OSEM reconstruc-
tion with nominal trajectory without geometry estimation. Bottom row: joint image and
geometry estimation given the nominal trajectory.
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point u0 can be approximated by a small clockwise rotation around the y′ axis and a small

translation in the −x′ direction (as they are defined in Figure 2.1). Similarly, a small

increase in the SID can be approximated by a small translation in the +z′ direction. Since

these are nearly ambiguous, I optimize only rotation and translation. This has the benefit

of being more computationally efficient. In my experiments, I found no perceptible drop

in image quality compared to estimating all nine parameters. Additionally, a strong prior

could be placed on the intrinsic parameters.

2.5 Conclusion

In this chapter, I have shown that I can accurately reconstruct a 3D volume using data

from a mobile C-arm. My proposed method of jointly estimating the geometry and the

image produces much improved results over the reconstruction using nominal parameters,

making 3D reconstruction on a C-arm viable. I have implemented this method on the GPU.

Since the geometry estimation was run at the lowest resolution, there is only a 50 percent

increase in computation time compared to static OSEM reconstruction.
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CHAPTER 3

CT IMAGES AS DENSITIES

In this chapter, I explore the relationship between CT images and densities. This con-

nection is essential for my work in the following chapter where I introduce a density

registration method to apply to thoracic CT images. This chapter will cover three aspects

of this relationship. First, I will discuss why one would theoretically expect an image of

linear attenuation coefficients to act like a density. Second, I will show that in practice, a CT

image does not act exactly as a density. Finally, I will introduce a method for transforming

CT images to act as densities, allowing them to be used in the density matching framework

in the following chapter.

3.1 Mass Density and Linear Attenuation Coefficients

3.1.1 Intensity Changes in Thoracic CT

The motivation for this work is to be able to accurately account for intensity changes

that occur in thoracic CT images during respiration. These intensity changes can be seen

in a single subject CT dataset at different phase points of the breathing cycle. During

inhalation, lung volume increases and the CT intensities inside the lung decrease. During

exhalation, lung volume decreases and lung CT intensities increase. This effect can be

seen in Figure 3.1. This relationship is also made clear by comparing the histograms of

image intensities in the peak inhale and peak exhale images, seen in Figure 3.2. In both

figures, I used a rat thoracic CT dataset composed of eleven phase points of an inhale-

exhale breathing cycle. These data were acquired by placing a rat on a ventilator and

acquiring data gated to the ventilator phase [1, 2].

3.1.2 Densities and Conservation of Mass

I will first introduce the mathematical definition of a density and then describe how

it relates to material density and CT images. Mathematically, a 3D density I(x) dx is a
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Figure 3.1. Rat breathing cycle. Top row: from left to right, inhale phase of the breathing
cycle. Bottom row: from left to right, exhale phase of the breathing cycle. During
inhalation, the lung volume increases and the CT intensities decrease. During exhalation,
the lung volume decreases and the CT intensities increase.
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Figure 3.2. Voxel intensity histograms in rat thoracic CT. Here I show the CT histograms
for the peak inhale and the peak exhale for the rat dataset. Each histogram has three peaks:
the peak at 0.0 represents surrounding air, the middle peak represents lung tissue, and the
peak at 1.0 represents soft tissue. For the lung tissue, the full inhale has higher volume
but a lower image intensity than the full exhale, therefore showing some conservation of
mass. For the soft tissue outside the lungs, the average intensity does not change because
it is incompressible. The slight drop in frequency of the full inhale is due to soft tissue
leaving the reconstruction boundary.
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volume form on a domain Ω ⊆ R
3, where I(x) is a nonnegative function on Ω and dx =

dx1 ∧ dx2 ∧ dx3 is the standard volume element on R
3. The key distinction between a

density and a function is how they deform. Given a deformation ϕ, a function g(x) deforms

via function composition (also called the L2 image action):

ϕ∗g(x) = g ◦ ϕ−1(x). (3.1)

In contrast, a density deforms via the density action:

ϕ∗(I(x) dx) = I ◦ ϕ−1(x)|Dϕ−1(x)| dx, (3.2)

where |Dϕ−1| is the Jacobian determinant of the diffeomorphism. The Jacobian determi-

nant describes the volume change of ϕ. If ϕ is volume preserving, the Jacobian determinant

is unitary. If ϕ increases (decreases) volume locally, then its value is greater than (less than)

one. Therefore, the density action increases or decreases the intensities due to volume

change.

A unique property of a density is that the total mass is conserved under the action of a

deformation, where the total mass is defined as the integral of the density over Ω:

∫

Ω
ϕ∗ I(x) dx =

∫

Ω
I(x) dx. (3.3)

This equality holds by performing a change of variables and is proven in the following

chapter.

A probability density function (PDF) is a special case of this mathematical definition

of a density. A PDF is nonnegative function of a continuous random variable, and the

integral over the entire domain is always equal to one. In this dissertation, I consider only

densities that exist on Ω ⊆ R
3, though the properties extend to other dimensions.

Perhaps the most common example of a density is a physical mass density ρ(x), with

units g/cm3. Physical mass density integrated over a closed system becomes the total

physical mass (units g). The narrow beam X-ray linear attenuation coefficient (LAC) for a

material is dependent on this physical mass density of the material:

µ(x) = (µ/ρ)mρ(x). (3.4)

Here (µ/ρ)m is a material specific property called the mass attenuation coefficient (units

cm2/g). The linear attenuation coefficient describes the X-ray’s intensity decrease per unit
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distance as an X-ray beam passes through a region (units cm−1). The X-ray mass attenua-

tion coefficient is dependent on the X-ray energy. These mass attenuation coefficient values

for specific materials at various energy levels have been experimentally tabulated by the

National Institute of Standards and Technology (NIST) [3]. Like physical mass density, I

define the LAC mass as the integral of the linear attenuation coefficient over a domain. As

with physical mass densities, I am integrating over a 3D domain, so LAC mass has units

cm2. A summary of these different mass and density examples is found in Table 3.1.

Given a mixture of materials, the total linear attenuation coefficient is a combination

of each material’s mass attenuation coefficient weighted by the material’s relative mass

density:

µ(x) = ∑
i

(µ/ρ)iρi(x). (3.5)

Since these combine linearly, it can be shown that if we have conservation of physical mass

in a closed system, we will also have conservation of LAC mass:

∫

Ω
ϕ∗µ(x) dx =

∫

Ω
ϕ∗∑

i

(µ/ρ)iρi(x) dx

= ∑
i

(µ/ρ)i

∫

Ω
ϕ∗ρi(x) dx

= ∑
i

(µ/ρ)i

∫

Ω
ρi(x) dx

=
∫

Ω
µ(x) dx. (3.6)

Therefore, in a closed system, we have conservation of LAC mass, even with a mixture of

materials.

Table 3.1. Density examples

density volume mass

PDF f (x) (unitless)
∫

A dx (unknown)
∫

A f (x)dx = 1 (unitless)

mass density ρ(x) (g/cm3)
∫

Ω
dx (cm3 )

∫

Ω
ρ(x)dx (g)

LAC µ(x) (cm−1)
∫

Ω
dx (cm3)

∫

Ω
µ(x)dx (cm2 )
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3.2 Mass Density and Effective Linear Attenuation
Coefficients

In the previous section, I showed that we expect conservation of LAC mass. How-

ever, this LAC is defined as the monoenergetic narrow beam linear attenuation coefficient.

Instead, modern CT scanners use wide beams that yield secondary photon effects at the

detector (mostly due to Compton scattering). CT image intensities reflect the effective linear

attenuation coefficients as opposed to the true narrow beam linear attenuation coefficient.

In this section, I will show that in modern CT systems, we do not have conservation of

effective linear attenuation coefficient mass, which I will call CT mass.

In this section, I specifically look at the conservation of mass properties inside the

lungs for two reasons. First, the field of view of the CT scanner is not a closed system,

as portions of the abdomen leave and enter the field of view. The lungs are not technically

a closed physical system as air enters and leaves the lungs, and oxygen and carbon dioxide

is exchanged in the blood. However, the linear attenuation coefficient of air is essentially

zero, and I assume the change in blood volume is negligible. Therefore, changes due to

respiration should not change the total LAC mass inside the lungs. The second reason

is that the majority of volume change occurs inside the lungs. Much of the anatomy

surrounding the lungs is fluid-filled, and is therefore essentially incompressible. The CT

intensity of this surrounding tissue remains constant throughout the breathing cycle, as

can be seen in Figure 3.2.

First, I show experimental results which indicate that CT mass in the lungs is not

conserved. In the rat dataset, I plot the average density, lung volume, and lung CT mass.

This can be seen in Figure 3.3. Here, CT mass is clearly not conserved, as it is dependent

on the average density and volume.

To see the relationship between effective LAC and true narrow beam LAC, a Monte

Carlo simulation was run using the X-ray spectrum and geometry from a Philips CT

scanner at various densities of water [4], since lung tissue is very similar to a mixture

between water and air. In these results, the nonlinear relationship between effective LAC

and narrow beam LAC is confirmed (see Figure 3.4).

Given conservation of mass within a single subject in a closed system, we expect an

inverse relationship between average density in a region Ω and volume of that region:
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Figure 3.3. Density, volume, and CT mass at each phase of the rat breathing cycle. Using
the given value for density, volume, and CT mass, it can be seen that CT mass is dependent
on the average density and volume. Therefore, the nominal CT mass is not conserved.
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Figure 3.4. Effective LAC from Monte Carlo simulation (solid line) and NIST reference
narrow beam LAC (dashed line). The true relationship between effective LAC and narrow
beam LAC is nonlinear.
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Dt =
M

Vt
(3.7)

=
M

∫

Ωt
1dx

. (3.8)

Here Ωt is the domain of the closed system (that moves over time) and t is a phase point of

the breathing cycle. This relationship between density and volume becomes linear in log

space with a slope of −1:

ln(Dt) = ln(M)− ln(Vt). (3.9)

These experimental results confirm the Monte Carlo simulation in that lungs imaged

under CT do not follow this inverse relationship. Rather, the slope found in these datasets

in log space is consistently greater (less negative) than -1 (see Figure 3.5). Because of this,

I seek a nonlinear intensity transformation for CT images such that CT mass in the lungs

is conserved.
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Figure 3.5. Density and volume log-log plots. Upper left: log-log plots without applying
the power correction for all 10 DIR subjects. The best fit line to each dataset is in red and
the mass-preserving line (slope = -1) is in black. Upper right: log-log plots after applying
the power correction I(x)α to the CT images. In this plot, the best fit line closely matches
the mass-preserving line. Bottom row: corresponding box plots of the slopes found in the
regression.
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3.3 Conservation of Mass in CT Images

In this chapter, I model this intensity transformation as a power function, i.e., I(x) 7→
I(x)α, and solve for the α that yields the best mass preservation. A power model was

chosen because it is a single parameter monotonic function that preserves the density of

air at zero. Furthermore, using a power function makes the analysis invariant to image

scaling. That is, if I(x)α exhibits conservation of mass, so does (cI(x))α, for c ∈ R
+.

I evaluated this power model using images from the Deformable Image Registration

(DIR) Laboratory dataset (http://www.dir-lab.com/) [5], which consists of 10 subjects

with 10 phase images each. I also evaluated this model on a set of 18 subjects with 10 phase

points each procured at University of Texas Southwestern Medical Center (UTSW). The

lungs for each patient at each timepoint were segmented with active contours using ITK-

SNAP [6] (http://www.itksnap.org/) combined with an intensity-based segmentation to

remove high-density regions in the lungs and around the lung border due to imperfect

initial segmentations.

For each subject, I performed a linear regression of the measured LAC density and

calculated volume in log space. Let d(α) = log
(∫

Ωt
It(x)αdx/

∫

Ωt
1dx

)

(the log density)

and v = log(
∫

Ωt
1dx) (the log volume), where again t is a breathing cycle timepoint. The

linear regression then models the relationship in log space as d(α) ≈ av + b. Let aj(α) be

the slope solved for in this linear regression for the jth subject. To find the optimal α for

the entire dataset, I solve

α = arg min
α′

∑
j

(aj(α
′) + 1)2, (3.10)

which finds the value of α that gives an average slope closest to -1. I solved for α using a

brute force search. Applying this power function to the CT data allows use of the density

matching algorithm described in the next chapter.

3.4 Results

For the DIR dataset, I used the proposed method to solve for the exponent that yields

conservation of mass. For this dataset, α = 1.64 minimizes Equation 3.10. Without using

the power fit, the average slope of the log-density log-volume plot was -0.66 (σ = 0.048,

95% confidence interval [−0.69,−0.62]). After applying the power function to the CT
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intensities, the average slope is -1.0 (σ = 0.054). The log-log plots of all 10 patients in

the DIR dataset as well as box plots of the slope are shown in Figure 3.5.

For the UTSW dataset, α = 1.90 minimized Equation 3.10. Without using the power

fit, the average slope of the log-log plot was -0.59 (σ = 0.11, 95% confidence interval

[−0.64,−0.53]).

The difference between the intensity change of the given lung data and true mass

preserving deformations was found to be statistically significant (p ≪ 0.001 for the DIR

dataset and p≪ 0.001 for the UTSW dataset). However, the differences between the mass-

preserving nature of these two datasets were not statistically significant (p = 0.11). For

these three statistical tests, I corrected for multiple comparisons using the Holm-Bonferroni

method.

3.5 Discussion

In this chapter, I have shown that although the narrow beam linear attenuation acts

as a density, the effective linear attenuation coefficient found in CT does not act as a

density. However, applying a power function transforms the CT dataset into a set of

images that exhibits conservation of mass. This simple nonlinear approximation yields

excellent results even when using the same power function for multiple subjects in a single

dataset.

I suspect that the biggest cause of the nonlinearity between true linear attenuation and

effective attenuation is the presence of X-ray scatter, which creates secondary photons

at the detector. The amount of X-ray scatter depends on the scanner geometry and the

energy spectrum. For this reason, I do not necessarily expect that the same α parameter of

the power functions to accurately correct for this across different CT scanners. However,

I found that the same α parameter accurately corrects the nonlinearity across multiple

subjects on the same scanner.
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CHAPTER 4

WEIGHTED DIFFEOMORPHIC DENSITY

MATCHING WITH APPLICATIONS TO

THORACIC IMAGE REGISTRATION

In Chapter 2, I explored the problem of uncertain motion in the imaging system while

assuming the object being imaged is stationary. In this chapter, I explore the opposite

scenario, where the motion of the imaging system is well known and the patient being

imaged is undergoing normal physiological motion.

In this chapter, I consider the problem of tracking organs undergoing deformations

as a result of breathing in the thorax and imaged via computed tomography (CT). This

problem has wide-scale medical applications, in particular, radiation therapy of the lung.

In this application, accurate estimation of organ deformations during treatment impacts

dose calculation and treatment decisions [1, 2, 3, 4]. The current state-of-the-art radiation

treatment planning involves the acquisition of a series of respiratory correlated CT (RCCT)

images to build 4D (three spatial and one temporal) treatment planning datasets. Funda-

mental to the processing and clinical use of these 4D datasets is the accurate estimation of

registration maps that characterize the motion of organs at risk as well as the target tumor

volumes.

According to the Centers for Disease Control and Prevention, lung cancer is the third

most common form of cancer, yet is by far the leading cause of cancer death, accounting for

approximately 27 percent of all cancer related deaths in the United States [5]. Thoracic CT

imaging is a valuable noninvasive technique for diagnosis and treatment planning of lung

cancer. In this chapter, I introduce a novel method for estimating these registration maps.

The proposed method uses the intimate link between densities and diffeomorphisms to

create an efficient density matching algorithm. The proposed method includes a natural

weighting penalty on volume change that models the varying compressibility properties
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of different tissues. It restricts compression and expansion in incompressible areas of the

body (such as bones and soft tissue surrounding the lungs) while allowing the lungs to

expand and contract during respiration.

4.1 Introduction

Currently, the application of diffeomorphisms in medical image registration is mostly

limited to the L2 image action of the diffeomorphism group, which is not a mass-preserving

transformation. Furthermore, the diffeomorphisms estimated from typical image reg-

istrations algorithms (such as LDDMM [6] or ANTs [7]) do not accurately model the

varying compressibility of different tissue types. In thoracic datasets, the lungs are highly

compressible. Conversely, the bronchial tubes and the tissue surrounding the lungs are

nearly incompressible. During inhalation, as air enters, the lung volume increases and

the lung density decreases, whereas during exhalation, the lung volume decreases and the

lung density increases. But in both inhale and exhale, the lung mass is conserved.

In 2010, the EMPIRE10 [8] challenge compared the accuracy of many registration al-

gorithms applied to intrapatient thoracic CT images. The winner of the competition, Ad-

vanced Normalization Tools (ANTs) [9, 10], used an LDDMM method with a normalized

cross-correlation metric. The second place winner was NiftyReg [11, 12], a registration

package using a cubic B-splines deformation model with a least trimmed square metric.

Both registration methods are open-source tools and are considered to be state-of-the-art

for registration accuracy. B-spline deformations are guaranteed to be smooth, but they do

not guarantee diffeomorphic properties (such as invertibility). However, neither method

models conservation of mass or spatially varying tissue compressibility.

More recently, some mass-preserving registration methods [13, 14] have been intro-

duced. Both these methods use cubic B-splines, which do not have the flexibility of stan-

dard diffeomorphic models. These methods also do not model spatially varying tissue

compressibility.

I present an image registration technique that incorporates conservation of mass and

models organ compressibility. Instead of the L2 image action of diffeomorphisms, I use

the physically appropriate density action. I also regularize the diffeomorphism by using a

space-varying penalty that allows for high compressibility of the lung tissue and at the
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same time enforces incompressibility of high-density structures such as bone and soft

tissue. The algorithm is based on the intimate link between the Riemannian geometry

of the space of diffeomorphisms and the space of densities [15, 16, 17]. The resulting

algorithm also has the added advantage that it is computationally efficient: it is orders

of magnitude faster than existing diffeomorphic image registration algorithms.

4.1.1 Diffeomorphic Image Registration

The fundamental problem of image registration is as follows: given two images I0 and

I1, find a realistic change of coordinates that brings these two images into correspondence.

Attempting to solve this problem is often done by defining an energy functional that is

the combination of two separate penalty functionals. The functional that quantifies the

accuracy of the deformation (the degree of correspondence) is called the data match term

d̄. The functional that describes the prior probability of the deformation is called the

regularization term d. The goal is to then solve for the ideal transformation that minimizes

the total energy functional

E(T) = σd2(T, id) + d̄2(T∗ I0, I1) , (4.1)

where T is some transformation acting on I0 and σ is a scalar weighting that balances the

relative strength of the two penalties. Essential to solving this problem is finding a suitable

penalty that describes the data match, finding a suitable penalty for the regularization

(along with the suitable class of transformations), and finding an accurate and efficient

model to solve the minimization problem.

Recently, a great deal of interest has been focused on a special class of transformations

called diffeomorphisms. A diffeomorphism ϕ is a bijective (one-to-one and onto) mapping

from Ω ⊆ R
d to Ω ⊆ R

d, where both ϕ and ϕ−1 are differentiable. In this chapter, I assume

d = 3. The composition of any two diffeomorphisms is a diffeomorphism, and the identity

transformation id is also a diffeomorphism. Therefore, the set of all diffeomorphisms

forms a Lie group denoted Diff(Ω).

A path in the group of diffeomorphisms is parameterized by t ∈ [0, 1] and is written

as ϕt(x) = ϕ(x, t). This time-dependent diffeomorphism is defined by a time-dependent

vector field vt(x) = v(x, t) subject to the O.D.E.
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d

dt
ϕt(x) = vt ◦ ϕt(x), (4.2)

with suitable boundary conditions for ϕ0(x) and ϕ1(x). While the group of diffeomor-

phisms is not a vector space, its tangent space is. The Lie algebra Tϕ Diff(Ω) is the space of

smooth vector fields. Since the time-varying velocity field must be smooth, a natural inner

product space is the H1 Hilbert space, where the V inner product is defined by

〈v(x), u(x)〉V = 〈Lv(x), u(x)〉L2 . (4.3)

Here L is some differential operator. In this chapter, I define the H1 metric using the Hodge

Laplacian on vector fields. Due to its connections to information geometry, I also refer to

this metric as the information metric:

GI(u, v) =
∫

Ω
〈−∆u, v〉 dx. (4.4)

Given the information metric, the distance metric in the diffeomorphism group is de-

fined by the length of the minimum path ϕt ∈ Diff(Ω):

d(ψ, φ)2 = inf

{∫ 1

0
GI(vt, vt) dt s.t. ϕ0 = ψ, ϕ1 = φ

}

. (4.5)

This distance metric gives diffeomorphisms several ideal properties. First, this distance

metric is right invariant: d(ψ, φ) = d(ψ ◦ ϕ, φ ◦ ϕ) for all ϕ ∈ Diff(Ω). From this, we can

see that the lengths of a forward and inverse deformation are equal: d(id, ϕ) = d(ϕ−1, id).

Diffeomorphisms in image registration have been used extensively. For more details, see

[18, 6, 19, 20]. The most common implementation of diffeomorphic image registration is

LDDMM. In order to calculate the metric of the diffeomorphism, Equation 4.5 is discretized

in time, so the computational complexity is dependent on the number of time points used.

4.2 Mathematical Formulation

Mathematically, the problem is to find a diffeomorphic transformation between two

densities on a subset Ω ⊆ R
3. With a “density,” I mean a volume form on Ω, i.e., an

element of the form µ = I dx where dx = dx1 ∧ dx2 ∧ dx3 is the standard volume element

on R
3 and I = I(x) is a nonnegative function on Ω. The space of all densities on Ω is

denoted Dens(Ω). Of course, one might identify I dx with its function I, and thereby think

of Dens(Ω) as the set of nonnegative functions on Ω. However, the invariance properties
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and geometry of the problem are remarkably more transparent when viewing Dens(Ω) as

a space of volume forms.

The group of diffeomorphisms Diff(Ω) acts from the right on Dens(Ω) by pullback: the

right action of ϕ ∈ Diff(Ω) on I dx ∈ Dens(Ω) is given by

(ϕ, I dx) 7→ ϕ∗(I dx) = (|Dϕ| I ◦ ϕ) dx, (4.6)

where |Dϕ| denotes the Jacobian determinant of ϕ. The corresponding left action is given

by pushforward:

(ϕ, I dx) 7→ ϕ∗(I dx) = (ϕ−1)∗(I dx) =
(

|Dϕ−1| I ◦ ϕ−1
)

dx. (4.7)

The key characteristic of the density action is that it is mass preserving (the total integral

remains constant). The proof of this is straightforward, although I will first prove an

identity that will be used several times in this chapter.

Lemma 1. Given the relationship ϕ(y) = x, we have |Dϕ−1| = 1
|Dϕ| .

Proof. This can be derived using the chain rule:

Dy ϕ−1(ϕ(y)) = Dyy = e (4.8)

Dx ϕ−1(x) · Dy ϕ(y) = e (4.9)

|Dx ϕ−1(x)||Dy ϕ(y)| = |e| (4.10)

|Dx ϕ−1(x)| = 1

|Dy ϕ(y)| . (4.11)

Now I will prove that the density action is mass preserving.

Lemma 2. For any ϕ : Ω→ Ω ∈ Diff(Ω) and any I(x) dx ∈ Dens(Ω), we have

∫

Ω
ϕ∗ I dx =

∫

Ω
I dx . (4.12)

Proof. I start with the definition of total mass after applying the density action

∫

Ω
ϕ∗ I dx =

∫

Ω
I(ϕ−1(x))|Dϕ−1(x)| dx. (4.13)

Then, by performing the change of variables

x 7→ ϕ(y), dx 7→ |Dϕ(y)| dy, |Dϕ−1(x)| 7→ 1

|Dϕ(y)| , (4.14)
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we have
∫

Ω
ϕ∗ I dx =

∫

Ω
I(ϕ−1(ϕ(y)))

1

|Dϕ(y)| |Dϕ(y)| dy =
∫

Ω
I(y) dy. (4.15)

The Riemannian geometry of the group of diffeomorphisms endowed with a suit-

able Sobolev H1 metric is intimately linked to the Riemannian geometry of the space

densities with the Fisher–Rao metric. This has been developed and extensively studied

in [15, 16, 17]. The basic observation is that there are Sobolev H1 metrics on the space of

diffeomorphisms that descend to the Fisher–Rao metric on the space of densities.

The tangent space of Dens(Ω) consists of the space of n-forms. Given a pair of tangent

vectors α, β ∈ Tµ Dens(Ω), the Fisher–Rao metric at the tangent space of µ is given by

ḠF
µ(α, β) =

∫

Ω

α

µ

β

µ
dµ(x). (4.16)

Now, the information metric defined is defined in Equation 4.4 with the Hodge Laplacian

on vector fields which is defined by

∆u = ∇div(u)−∇×∇u . (4.17)

By the Helmholtz-Hodge decomposition, this vector field u can be split into a sum of

a divergence free vector field and a curl free vector field. In this case, the divergence free

vector field represents the vertical component of T Diff(Ω) and the curl free vector field

represents the horizontal component. Now, the infinitesimal action of a vector field u on a

density µ is the Lie derivative

Luµ = divµ(u)µ . (4.18)

Given two vector fields u, v ∈ T Diff(Ω), I define α = Luµ, β = Lvµ where α, β ∈
Tµ Dens(Ω). Then, the information metric on T Diff Ω descends to the Fisher-Rao metric

on T Dens Ω:

GI(u, v) =
∫

Ω
〈−∇div(u), v〉dµ(x)

=
∫

Ω
〈div(u), div(u)〉dµ(x)

=
∫

Ω
〈div(u), div(u)〉dµ(x)

=
∫

Ω

α

µ

β

µ
dµ(x)

= ḠF(α, β). (4.19)
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Because of this, horizontal geodesics on Diff(Ω) descend to Fisher-Rao geodesics on

Dens(Ω), and there is a unique horizontal lift of curves in Dens(Ω) to Diff(Ω).

It can be shown that Dens(Ω) with the Fisher–Rao metric is isometric to the infinite-

dimensional sphere S∞(Ω) [17]. Therefore, the geodesics and distance function associated

with the Fisher–Rao metric are explicit. The distance associated with the Fisher–Rao metric

is traditionally defined between probability densities (densities of total mass 1) and is given

by

dF(µ0, µ1) =
√

vol(Ω) arccos

(
1

vol(Ω)

∫

Ω

√
µ0

dx

µ1

dx
dx

)

, (4.20)

where µ0 and µ1 are probability densities. It naturally extends to the space of all densities

and the case when vol(Ω) = ∞, for which it is given by

d2
F(I0 dx, I1 dx) =

∫

Ω
(
√

I0 −
√

I1)
2 dx . (4.21)

Notice that d2
F(·, ·) in this case is the Hellinger distance. For details, see [17].

The Fisher–Rao metric is the unique Riemannian metric on the space of probability

densities that is invariant under the action of the diffeomorphism group [21, 22]. This

invariance property extends to the induced distance function, so

d2
F(I0 dx, I1 dx) = d2

F(ϕ∗(I0 dx), ϕ∗(I1 dx)) ∀ϕ ∈ Diff(Ω) . (4.22)

This can be verified by applying the same change of variables used to prove Lemma 2 on

Equation 4.21.

Motivated by the aforementioned properties, I develop a weighted diffeomorphic

matching algorithm for matching two density images. The algorithm is based on the

Sobolev H1 gradient flow on the space of diffeomorphisms that minimizes the energy

functional

E(ϕ) = d2
F(ϕ∗( f dx), ( f ◦ ϕ−1) dx) + d2

F(ϕ∗(I0 dx), I1 dx)). (4.23)

This energy functional is only a slight modification of the energy functional studied in [17].

Indeed, if f in the above equation is a constant σ > 0, then Equation 4.23 reduces to

the energy functional of Bauer, Joshi, and Modin [17, § 5.1]. Moreover, the geometry

described in [17, §5.3] is valid also for the functional in Equation 4.23, and, consequently,

the algorithm developed in [17, §5.2] can be used also for minimizing Equation 4.23. There

the authors view the energy functional as a constrained minimization problem on the
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product space Dens(Ω) × Dens(Ω) equipped with the product distance (cf. Figure 4.1

and [17, §5] for details on the resulting geometric picture). Related work on diffeomorphic

density matching using the Fisher–Rao metric can be found in [23, 24].

Using the invariance property of the Fisher–Rao metric and assuming infinite volume,

the main optimization problem associated with the energy functional in Equation 4.23 is

the following:

Given densities I0 dx, I1 dx, and f dx, find ϕ ∈ Diff(Ω) minimizing

E(ϕ) =
∫

Ω
(
√

|Dϕ−1| − 1)2 f ◦ ϕ−1 dx
︸ ︷︷ ︸

E1(ϕ)

+
∫

Ω

(√

|Dϕ−1|I0 ◦ ϕ−1 −
√

I1

)2
dx

︸ ︷︷ ︸

E2(ϕ)

. (4.24)

The invariance of the Fisher–Rao distance can be seen with the same change of variables

as before: x 7→ ϕ(y), dx 7→ |Dϕ| dy, and |Dϕ−1| 7→ 1
|Dϕ| . Then, Equation 4.24 becomes

ϕ

id

Diff(Ω)

D
iff

1
,I

0 (Ω
)

Dens(
Ω)×Dens(

Ω)

(f.dx, I0.dx)

((f ◦ ϕ)dx, I1.dx)

(ϕ∗(f.dx), ϕ∗(I0.dx))

∇E

Orb(f.dx, I0.dx)

Figure 4.1. Illustration of the geometry associated with the density matching problem. The
gradient flow on Diff(Ω) descends to a gradient flow on the orbit Orb( f dx, I0 dx). While
constrained to Orb( f dx, I0 dx) ⊂ Dens(Ω) × Dens(Ω), this flow strives to minimize the
product Fisher–Rao distance to (( f ◦ ϕ) dx, I1 dx).
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E(ϕ) =
∫

Ω
(1−

√

|Dϕ|)2 f dy +
∫

Ω

(√

I0 −
√

|Dϕ|I1 ◦ ϕ
)2

dy . (4.25)

To better understand the energy functional E(ϕ), I consider the two terms separately.

The first term E1(ϕ) is a regularity measure for the transformation. It penalizes the devi-

ation of the diffeomorphism ϕ from being volume preserving. The density f dx acts as

a weighting on the domain Ω. That is, change of volume (compression and expansion

of the transformation ϕ) is penalized more in regions of Ω where f is large. The second

term E2(ϕ) penalizes dissimilarity between I0 dx and ϕ∗(I1 dx). It is the Fisher–Rao distance

between the initial density I0 dx and the transformed target density ϕ∗(I1 dx). Because of

the invariance (Equation 4.22) of the Fisher–Rao metric, this is the same as the Fisher–Rao

distance between I1 dx and ϕ∗(I0 dx).

Solutions to the problem in Equation 4.24 are not unique. To see this, let DiffI(Ω) denote

the space of all diffeomorphisms preserving the volume form I dx:

DiffI(Ω) = {ϕ ∈ Diff(Ω) | |Dϕ| (I ◦ ϕ) = I}. (4.26)

If ϕ is a minimizer of E(·), then ψ ◦ ϕ for any

ψ ∈ Diff1,I0
(Ω) := Diff1(Ω) ∩DiffI0

(Ω) (4.27)

is also a minimizer. Notice that this space is not trivial. For example, any diffeomorphism

generated by a Nambu–Poisson vector field (see [25]), with I0 as one of its Hamiltonians, will

belong to it. A strategy to handle the degeneracy was developed in [17, §5]. The fact that

the metric is descending with respect to the H1 metric on Diff(Ω) can be used to ensure

that the gradient flow is infinitesimally optimal, i.e., always orthogonal to the null-space. I

employ the same strategy in this chapter. The corresponding geometric picture can be seen

in Figure 4.1.

4.3 Gradient Flow Algorithm Development

I now derive in detail the algorithm used to optimize the functional defined in Equa-

tion 4.25. Let ∇GI
E denote the gradient with respect to the information metric defined in

Equation 4.4. My approach to minimize the functional of Equation 4.25 is to use a simple

Euler integration of the discretization of the gradient flow:

ϕ̇ = −∇GI
E(ϕ). (4.28)
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The resulting final algorithm (Algorithm 2) is order of magnitudes faster than LDDMM,

since there is no requirement to time integrate the geodesic equations, as is necessary in

LDDMM [26].

In the following theorem, I calculate the gradient of the energy functional:

Theorem 1. The GI–gradient of the matching functional in Equation 4.25 is given by

∇GI
E = −∆−1

(

−∇
(

f ◦ ϕ−1(1−
√

|Dϕ−1|)
)
−

√

|Dϕ−1| I0 ◦ ϕ−1∇
(√

I1

)
+∇

(
√

|Dϕ−1| I0 ◦ ϕ−1
)√

I1

)

. (4.29)

Remark 1. Notice that in the formula for ∇GI
E, I never need to compute ϕ, so in practice, I only

compute ϕ−1. I update this directly via ϕ−1(x) 7→ ϕ−1(x + ǫ∇GI
E) for some step size ǫ.

Proof. I first calculate the variation of the energy functional. Therefore let ϕs be a family of

diffeomorphisms parameterized by the real variable s, such that

ϕ0 = ϕ and
d

ds

∣
∣
∣
s=0

ϕs = v ◦ ϕ. (4.30)

I use the following identity, as derived in [27]:

d

ds

∣
∣
∣
s=0

√

|Dϕs| =
1

2

√

|Dϕ|div(v) ◦ ϕ. (4.31)

The variation of the first term of the energy functional is

d

ds

∣
∣
∣
s=0

E1(ϕ) =
∫

Ω
f (y)(

√

|Dϕ(y)| − 1)
√

|Dϕ(y)|div(v) ◦ ϕ(y) dy . (4.32)

I perform a change of variable y 7→ ϕ−1(x), dy 7→ |Dϕ−1(x)| dx, again using the fact that

|Dϕ(y)| = 1
|Dϕ−1(x)| :

d

ds

∣
∣
∣
s=0

E1(ϕ) =
∫

Ω
f ◦ ϕ−1(x)(1−

√

|Dϕ−1(x)|)div(v(x)) dx (4.33)

=

〈

f ◦ ϕ−1(1−
√

|Dϕ−1|), div(v)

〉

L2(R3)

(4.34)

=−
〈

∇
(

f ◦ ϕ−1(1−
√

|Dϕ−1|)
)

, v

〉

L2(R3)

, (4.35)

using the fact that the adjoint of the divergence is the negative gradient. For the second

term of the energy functional, I expand the square

E2(ϕ) =
∫

Ω
I0(y)− 2

√

I0(y)I1 ◦ ϕ(y)|Dϕ(y)|+ I1 ◦ ϕ(y)|Dϕ(y)| dy . (4.36)



63

Now
∫

Ω
I1 ◦ ϕ(y)|Dϕ(y)| dy is constant (conservation of mass), so I only need to minimize

over the middle term. The derivative is then

d

ds

∣
∣
∣
s=0

E2(ϕ) = −
∫

Ω
2
√

I0(y)
(
∇
√

I1
T

v
)
◦ ϕ(y)

√

|Dϕ(y)|

−
√

I0(y)I1 ◦ ϕ(y)|Dϕ(y)|div(v) ◦ ϕ(y) dy. (4.37)

I do the same change of variables as before:

d

ds

∣
∣
∣
s=0

E2(ϕ) = −
∫

Ω

√

I0 ◦ ϕ−1(x)
|Dϕ−1(x)|
√

|Dϕ−1(x)|
(

2∇
√

I1(x)
T

v(x) +
√

I1(x)div(v)(x)
)

dx

(4.38)

= −
〈

2
√

|Dϕ−1| I0 ◦ ϕ−1∇
√

I1, v

〉

L2(R3)

−
〈√

|Dϕ−1| I0 ◦ ϕ−1 I1, div(v)

〉

L2(R3)

(4.39)

=

〈

−
√

|Dϕ−1| I0 ◦ ϕ−1∇
√

I1, v

〉

L2(R3)

+

〈

∇
(√

|Dϕ−1| I0 ◦ ϕ−1

)
√

I1, v

〉

L2(R3)

. (4.40)

From the above equations, I conclude that

−∆(∇GI
E) = −∇

(

f ◦ ϕ−1(1−
√

|Dϕ−1|)
)

−
√

|Dϕ−1| I0 ◦ ϕ−1∇
√

I1 +∇
(√

|Dϕ−1| I0 ◦ ϕ−1

)
√

I1 . (4.41)

Since I am taking the Sobolev gradient of E, I apply the inverse Laplacian to the right-hand

side of Equation 4.41 to solve for ∇GI
E.

Algorithm 2 Weighted Diffeomorphic Density Matching

Choose ǫ > 0
Set ϕ−1 = id
Set |Dϕ−1| = 1
for iter = 0...numIters do

Compute ϕ∗ I0 = I0 ◦ ϕ−1|Dϕ−1|
Compute u = −∇

(
f ◦ ϕ−1(1−

√

|Dϕ−1|)
)
−
√

ϕ∗ I0∇
√

I1 +∇(
√

ϕ∗ I0)
√

I1

Compute v = −∆−1(u)
Update ϕ−1 7→ ϕ−1(y + ǫv)
Update |Dϕ−1| 7→ |Dϕ−1| ◦ ϕ−1e−ǫdiv(v)

end for
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Remark 2. Algorithm 2 constructs the mapping ϕ−1 by numerically integrating the vector field

v. Thus, for small enough ǫ, the computed transformation ϕ−1 is a diffeomorphism (as is also the

case in LDDMM).

4.4 Results

4.4.1 Evaluation on RCCT Dataset

I applied the proposed method to phase-binned human thoracic CT datasets acquired

at the University of Texas Southwestern Medical Center. This dataset consists of three

patients who are candidates for radiation therapy of a tumor in the lungs. Each patient

dataset consists of a full breathing cycle with images at 10 phase points of the respiratory

cycle. Each image has corresponding segmentations of certain regions of interest that were

manually segmented by a clinical specialist. These segmentations include the gross tumor

volume (GTV), the planning target volume (PTV), and a segmentation of the lungs. The

GTV describes the primary tumor whereas the PTV consists of the primary tumor plus a

small expansion (from 1.0 to 1.5 cm surrounding the tumor). These segmentations for a

single phase of one of the patients are shown in Figure 4.2.

I used the proposed method to register each phase image to the full-exhale image

(phase 5), where each image was first transformed with the power function introduced in

the previous chapter. To show the properties of the resulting deformations, I show results

from a registration of the full-exhale phase to the full-inhale phase of the first patient.

Figure 4.2. From left to right, the GTV, PTV, and lung segmentations are the red regions.
The GTV segmentation contains the tumor, the PTV segmentation contains the tumor plus
a surrounding region of interest, and the lung segmentation contains both lungs.
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Shown in Figure 4.3 are the full exhale, the full exhale deformed via the density action

to the full inhale image, and the corresponding target image at full inhale. The data match

term is also shown in Figure 4.4, where I show the change in the Fisher–Rao metric from

the unregistered images to the density-registered images. The majority of the intensity

mismatch in the unregistered image is at the diaphragm and the tumor.

For the compressibility penalty weighting f , I used a soft thresholding of the intensity

values of the initial image using the logistic function. While any smooth positive function

can be used, a soft thresholding of CT intensities provides a fairly accurate estimate of

compressibility. High-intensity regions of the CT image (corresponding to bone and soft

tissue) are given a high penalty ( f (x) = 10σ), and low-intensity regions of the CT image

(corresponding to air and lungs) are given a low penalty ( f (x) = 0.1σ) (see Figure 4.5).

The Jacobian determinants of these methods plus the Jacobian determinants found in

ANTs and NiftyReg are in Figure 4.6. The proposed method constrains the contraction and

expansion to inside the lung and outside the body. In this figure, I also show the results of

using the density action with a constant penalty function ( f (x) = σ). The contraction and

expansion of the Jacobian determinant from ANTS and NiftyReg is quite severe and does

not represent normal physiological motion.

full inhale inhale den deformed full exhale

Iin ϕ∗(Iex dx) Iex

Figure 4.3. Density action results. This figure shows the lung image at the full exhale, the
full exhale deformed via the density action, and the corresponding image at full inhale.
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Figure 4.4. Fisher–Rao metric between the unregistered densities (left) and the Fisher–Rao
metric between the deformed and target densities (right), using the proposed method.
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Figure 4.5. Energy plot and the weighting density. The energy is monotonically decreas-
ing, and the penalty image places a high penalty on volume change outside the lungs.
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Figure 4.6. Jacobian determinants: In the upper left is the Jacobian determinant of the
transformation estimated by the proposed method. Notice that the volume change is
confined to inside the lungs and outside the body. In the upper right, I use the density
action, but without a locally-varying penalty (i.e., f (x) = σ). Without the local-varying
penalty, there is contraction and expansion outside of the lungs to match noise. On
the bottom row are the Jacobian determinants of ANTs (left) and NiftyReg (right). In
ANTs and NiftyReg, the contraction and expansion outside of the lungs are quite severe,
and the mixture of contraction and expansion inside the lungs does not model known
physiological motion.
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4.4.2 Registration Accuracy

In order to evaluate the accuracy of the weighted diffeomorphic density matching algo-

rithm, I compared the registration accuracy between the proposed method and two current

state-of-the-art registration methods: ANTs and NiftyReg. To quantify the accuracy, I

used the previously mentioned manually segmented GTV, PTV, and lungs, and compared

the postregistration Dice coefficients of all the methods. All three methods showed a

significantly higher average Dice coefficient compared to the unregistered images. Overall,

the weighted density matching method had the highest overall accuracy. I looked at each

of the segmentations separately and performed statistical analysis on the improvement.

The three datasets consisted of 27 segmentations (3 of the 30 were missing), so there was a

total of 24 registrations performed (as each image was registered to the full exhale image).

The average Dice coefficients for each region can be seen in Figure 4.7 and in Table 4.1.

Overall, the proposed method is significantly better than the other two methods.

For the statistical analysis, I performed nine paired t-tests comparing my method to

ANTs, NiftyReg, and unregistered for each of the three regions of interest. I corrected for

multiple comparisons using the Holm-Bonferroni method.

To better understand the magnitude of the differences between registration methods,

GTV
(Unregistered=.763**)

PTV
(Unregistered=.853**)

Lung
(Unregistered=.957**)
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Figure 4.7. Dice coefficients after registration comparing three methods: The proposed
weighted density matching, ANTs, and NiftyReg. Overall, the proposed method is better
than the current state-of-the-art methods for deformable thoracic registration.
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Table 4.1. Dice coefficient averages for all three datasets (24 independent registrations).
The significance refers to paired t-tests between the proposed density registration and each
individual method (∗ is p < 0.01, ∗∗ is p < 0.001).

Density ANTs NiftyReg Unregistered

GTV 0.942 0.936∗ 0.928∗ 0.763∗∗

PTV 0.956 0.955 0.938∗∗ 0.853∗∗

Lung 0.985 0.985 0.981∗∗ 0.957∗∗

I also computed the estimated displacement error of the tumor. For this, I computed the

centers of mass of the deformed tumors and compared them to the reference center of mass

at full exhale for each of the three patients. The mean displacement error was 4.77 mm

(σ = 3.36 mm) for the unregistered tumors, 0.678 mm (σ = 0.372 mm) using ANTs, 0.698

mm (σ = 0.475 mm) using NiftyReg, and 0.452 mm (σ = 0.239 mm) using the proposed

weighted density registration. Once again, the proposed method is more accurate than the

proposed methods.

Both ANTs and NiftyReg packages are implemented on the CPU and have significant

preprocessing steps. I implemented the proposed algorithm on a single Titan-Z GPU

(using the PyCA software package [28] http://bitbucket.org/scicompanat/pyca). For

a more relevant performance comparison to my method, I also implemented an intensity-

based LDDMM method. The proposed algorithm is substantially faster than LDDMM-like

methods. The proposed algorithm runs at 100 iterations per minute whereas LDDMM

runs at 12 iterations per minute. I used 10 time steps to integrate the geodesic equations

associated with the LDDMM formulation. Since I am not required to integrate the geodesic

equations in the proposed algorithm, I have a nearly 10x speed-up compared to LDDMM.

4.5 Discussion

In this chapter, I introduced a computationally efficient method for estimating regis-

tration maps between thoracic CT images. The proposed solution accurately incorporates

the fundamental property of mass conservation and the spatially varying compressibility

of thoracic anatomy. CT mass was conserved by viewing the images as densities and ap-

plying the density action of a diffeomorphism instead of the typical L2 action. The volume
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change in incompressible organs was limited by placing a spacially-varying penalty on

the Jacobian determinant of the diffeomorphism. Although any nonnegative function f (x)

can be used, I simply used a soft-thresholding function on the initial image. This choice

is based on the assumption that low CT image values (such as the lungs and air) exhibit a

large amount of volume change whereas high image values (such as other soft tissue and

bone) are nearly incompressible.

The resulting method is more accurate than current state-of-the-art registration meth-

ods and is considerably more computationally efficient.
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CHAPTER 5

DISCUSSION

In this chapter, I discuss the contributions of this dissertation and the potential for

future work.

5.1 Summary of Contributions

Below, I will state each claim made in the introduction with a summary of how each

claim was addressed.

5.1.1 Chapter 2

A method for 3D cone-beam CT reconstruction for mobile C-arms is introduced. Current

methods for cone-beam CT reconstructions assume a stable and well-known geometry of the imaging

system. The hardware of mobile C-arms is considerably less geometrically robust than fixed-room

C-arms. Therefore, the introduced method includes the estimation of the motion of the C-arm as well

as the estimation of the underlying 3D image. This joint estimation of the image and the geometry is

done in an alternating scheme, where the image is estimated in the expectation maximization (EM)

framework and the geometry is estimated using a gradient-based energy minimization scheme to

improve the correspondence between the acquisition data and estimated 3D image.

For CT reconstruction, I showed that the ordered subset expectation maximization

(OSEM) algorithm with a TV prior provides excellent image quality in addition to fast

convergence. I derived and implemented the gradients with respect to the extrinsic and in-

trinsic parameters. I then used these to maximize the normalized cross-correlation (NCC)

between the projection images and the projection operator applied to the current estimate

of the volume. I showed that the resulting estimate of the geometry is very close to the

true ground truth geometry. I also evaluated this method on four C-arm datasets. In each

of these cases, the resulting reconstruction image is much improved and devoid of mis-

calibration artifacts. I implemented the proposed method on the GPU using a multiscale
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approach, yielding a computationally efficient reconstruction algorithm that is robust to

uncertain geometry.

5.1.2 Chapter 3

This chapter provides analysis on the mass-preserving nature of thoracic CT images. Although

image intensities in CT should be theoretically conserved, I show that in real thoracic CT datasets,

the assumption of conservation of mass is not valid. However, I provide a method to transform these

CT images into objects that are indeed mass preserving, and show the approach is applicable across

multiple patient datasets acquired on the same CT scanner.

I proved that in a closed system, the narrow-beam LAC mass is conserved. This un-

derlying property causes the intensity changes that occur in the lungs due to respiration.

However, I showed that the total intensity in CT images is not conserved, as CT data consist

of images of effective linear attenuation coefficients, not the true narrow-beam linear atten-

uation coefficients. These raw CT images are not suitable for use in a density-matching

algorithm. Therefore, I introduced a method to convert these raw CT images into images

that are indeed mass preserving. By applying a power function to the CT images, they

are converted into images that are mass preserving. Using two large sets of RCCT patient

datasets, I solved for the optimal power function parameter and showed that applying this

transformation yields consistent results across a single CT scanner.

5.1.3 Chapter 4

A new method for thoracic CT image registration is introduced. The proposed diffeomorphic

model acts on densities, thereby ensuring that the deformations preserve mass. These deformations

are regularized by a locally varying penalty on volume change. In incompressible areas of the

body (including surrounding soft tissue and bones), the volume change is restricted. In much more

compressible areas of the image (such as the lungs), the method allows considerable compression and

expansion. The resulting algorithm is computationally efficient and accurately models respiratory

motion.

The proposed method uses the recently discovered intimate link between diffeomor-

phisms and densities [1, 2, 3] that allows solving for the distance metric on diffeomor-

phisms in closed form and allows for a natural weighting on local tissue compressibility.

I implemented this method and compared it to current state-of-the-art lung registration
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techniques. The resulting deformations show much more physiologically realistic motion

than previous state-of-the-art methods. I also quantified the accuracy of the deformations

by comparing the accuracy for regions of interest in radiation oncology. The proposed

method is significantly more accurate than the reference methods and is orders of magni-

tude faster.

5.2 Future Work

5.2.1 4DCT Reconstruction Using Weighted Density Registration

The focus of Chapter 4 is the registration of separate RCCT images. Recently, meth-

ods have been introduced for 4D reconstruction [4, 5] of respiratory CT datasets. These

methods jointly estimate respiratory motion and the reconstructed image to help reduce

artifacts common in phase-binned images. These methods already directly incorporate a

motion model into the reconstruction framework, so adding the weighted diffeomorphic

density model would be straightforward. One benefit to 4D reconstruction is that it no

longer splits data into 10 distinct reconstruction images. Rather, 4DCT uses the full data to

create a continuous motion model of the respiratory cycle that is indexed by the breathing

amplitude or phase. The benefits of this addition include a reduction in binning artifacts

and an increase in the signal-to-noise ratio.

One further improvement to 4DCT would be to model cycle-to-cycle phase variations.

In this application, the 4D reconstruction would be parameterized by two surrogate sig-

nals: one that describes the location in the breathing phase and one that describes the mag-

nitude of the current phase. This would further increase the accuracy of tumor tracking

and improve treatment in radiation oncology.

5.2.2 Joint Reconstruction, Geometry Estimation, and
Respiratory Estimation

In future work, both methods of motion estimation provided in this dissertation can be

combined to yield a method for joint reconstruction, geometry estimation, and estimation

of respiration for cone-beam thoracic CT. In this case, a C-arm would perform an orbital

scan of the thorax. The reconstruction would then be done incorporating the estimation of

the geometric parameters of the C-arm while also incorporating the proposed diffeomor-

phic motion model during the 4D reconstruction.
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5.2.3 Quantitative Radiation Dose Calculation

CT imaging has traditionally had the primary purpose of being a visual tool, with

which trained clinicians make diagnoses and treatment plans. In radiation therapy, it is

necessary to quantitatively know the attenuation coefficients in the patient, as this infor-

mation is needed to calculate the dose absorbed by the tumor and surrounding organs. The

purpose of Chapter 3 was to transform an image of effective attenuation coefficients into

an image that acts as a density, i.e., has conservation of mass. Further investigative work

is needed to transform an image of effective attenuation coefficients into an image of true

narrow-beam linear attenuation coefficients, which necessarily has conservation of mass.

This improvement would allow more accurate dose calculations in radiation therapy of

the lungs and therefore provide more reliable treatment.
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