3 research outputs found

    Exploration of Subjective Color Perceptual-Ability by EEG-Induced Type-2 Fuzzy Classifiers

    Get PDF
    Perceptual-ability informally refers to the ability of a person to recognize a stimulus. This paper deals with color perceptual-ability measurement of subjects using brain response to basic color (red, green and blue) stimuli. It also attempts to determine subjective ability to recognize the base colors in presence of noise tolerance of the base colors, referred to as recognition tolerance. Because of intra- and inter-session variations in subjective brain signal features for a given color stimulus, there exists uncertainty in perceptual-ability. In addition, small variations in the color stimulus result in wide variations in brain signal features, introducing uncertainty in perceptual-ability of the subject. Type-2 fuzzy logic has been employed to handle the uncertainty in color perceptual-ability measurements due to a) variations in brain signal features for a given color, and b) the presence of colored noise on the base colors. Because of limited power of uncertainty management of interval type-2 fuzzy sets and high computational overhead of its general type-2 counterpart, we developed a semi-general type-2 fuzzy classifier to recognize the base color. It is important to note that the proposed technique transforms a vertical slice based general type-2 fuzzy set into an equivalent interval type-2 counterpart to reduce the computational overhead, without losing the contributions of the secondary memberships. The proposed semi-general type-2 fuzzy sets induced classifier yields superior performance in classification accuracy with respect to existing type-1, type-2 and other well-known classifiers. The brain-understanding of a perceived base or noisy base colors is also obtained by exact low resolution electromagnetic topographic analysis (e-LORETA) software. This is used as the reference for our experimental results of the semi-general type-2 classifier in color perceptual-ability detection. Statistical tests undertaken confirm the superiority of the proposed classifier over its competitors. The proposed technique is expected to have interesting applications in identifying people with excellent color perceptual-ability for chemical, pharmaceutical and textile industries

    Hybrid Binary Particle Swarm Optimization Differential Evolution-Based Feature Selection For EMG Signals Classification

    Get PDF
    To date, the usage of electromyography (EMG) signals in myoelectric prosthetics allows patients to recover functional rehabilitation of their upper limbs. However, the increment in the number of EMG features has been shown to have a great impact on performance degradation. Therefore, feature selection is an essential step to enhance classification performance and reduce the complexity of the classifier. In this paper, a hybrid method, namely, binary particle swarm optimization differential evolution (BPSODE) was proposed to tackle feature selection problems in EMG signals classification. The performance of BPSODE was validated using the EMG signals of 10 healthy subjects acquired from a publicly accessible EMG database. First, discrete wavelet transform was applied to decompose the signals into wavelet coefficients. The features were then extracted from each coefficient and formed into the feature vector. Afterward, BPSODE was used to evaluate the most informative feature subset. To examine the effectiveness of the proposed method, four state-of-the-art feature selection methods were used for comparison. The parameters, including accuracy, feature selection ratio, precision, F-measure, and computation time were used for performance measurement. Our results showed that BPSODE was superior, in not only offering a high classification performance, but also in having the smallest feature size. From the empirical results, it can be inferred that BPSODE-based feature selection is useful for EMG signals classificatio

    Multiobjective particle swarm optimization: Integration of dynamic population and multiple-swarm concepts and constraint handling

    Get PDF
    Scope and Method of Study: Over the years, most multiobjective particle swarm optimization (MOPSO) algorithms are developed to effectively and efficiently solve unconstrained multiobjective optimization problems (MOPs). However, in the real world application, many optimization problems involve a set of constraints (functions). In this study, the first research goal is to develop state-of-the-art MOPSOs that incorporated the dynamic population size and multipleswarm concepts to exploit possible improvement in efficiency and performance of existing MOPSOs in solving the unconstrained MOPs. The proposed MOPSOs are designed in two different perspectives: 1) dynamic population size of multiple-swarm MOPSO (DMOPSO) integrates the dynamic swarm population size with a fixed number of swarms and other strategies to support the concepts; and 2) dynamic multiple swarms in multiobjective particle swarm optimization (DSMOPSO), dynamic swarm strategy is incorporated wherein the number of swarms with a fixed swarm size is dynamically adjusted during the search process. The second research goal is to develop a MOPSO with design elements that utilize the PSO's key mechanisms to effectively solve for constrained multiobjective optimization problems (CMOPs).Findings and Conclusions: DMOPSO shows competitive to selected MOPSOs in producing well approximated Pareto front with improved diversity and convergence, as well as able to contribute reduced computational cost while DSMOPSO shows competitive results in producing well extended, uniformly distributed, and near optimum Pareto fronts, with reduced computational cost for some selected benchmark functions. Sensitivity analysis is conducted to study the impact of the tuning parameters on the performance of DSMOPSO and to provide recommendation on parameter settings. For the proposed constrained MOPSO, simulation results indicate that it is highly competitive in solving the constrained benchmark problems
    corecore