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Abstract: To date, the usage of electromyography (EMG) signals in myoelectric prosthetics allows
patients to recover functional rehabilitation of their upper limbs. However, the increment in the
number of EMG features has been shown to have a great impact on performance degradation.
Therefore, feature selection is an essential step to enhance classification performance and reduce
the complexity of the classifier. In this paper, a hybrid method, namely, binary particle swarm
optimization differential evolution (BPSODE) was proposed to tackle feature selection problems
in EMG signals classification. The performance of BPSODE was validated using the EMG signals
of 10 healthy subjects acquired from a publicly accessible EMG database. First, discrete wavelet
transform was applied to decompose the signals into wavelet coefficients. The features were then
extracted from each coefficient and formed into the feature vector. Afterward, BPSODE was used
to evaluate the most informative feature subset. To examine the effectiveness of the proposed
method, four state-of-the-art feature selection methods were used for comparison. The parameters,
including accuracy, feature selection ratio, precision, F-measure, and computation time were used
for performance measurement. Our results showed that BPSODE was superior, in not only offering
a high classification performance, but also in having the smallest feature size. From the empirical
results, it can be inferred that BPSODE-based feature selection is useful for EMG signals classification.

Keywords: electromyography; discrete wavelet transform; binary particle swarm optimization;
binary differential evolution; feature selection; hybrid optimization; classification

1. Introduction

Electromyography (EMG) is a biomedical signal that records electric potential when there is a
muscle contraction. Recently, the usefulness of EMG as a control source of myoelectric prosthetics has
received much attention from biomedical researchers. The recognition of hand movements enables
the application of multi-functional myoelectric prosthetics in engineering, rehabilitation, and clinical
areas. However, myoelectric control is still limited by inadequate control techniques [1]. In addition,
EMG signals are easily influenced by noise due to the fact of its complex nature [2]. Therefore, most
researchers apply advanced signal processing, feature extraction, and feature selection techniques to
extract only the useful information from the signal.

In previous studies, discrete wavelet transform (DWT) was found to be the most frequently used
signal processing method due to its effectiveness in the analysis of EMG signals [3,4]. Intuitively,
DWT offers the optimal time–frequency resolution by decomposing the signal into multi-resolution
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coefficients. However, by applying DWT, the number of extracting features is greatly increased [5].
This will not only improve the complexity of the recognition system, but also degrade the classification
performance. In fact, it is difficult to identify which feature is optimal, as well as the best feature
combination for producing the optimal classification result. Therefore, the feature selection technique
is required to solve the feature selection problem.

Naturally, a feature set is made up of relevant, irrelevant, and redundant features. A relevant
feature is able to enhance the prediction accuracy, whereas an irrelevant or redundant feature might
be reducing the performance of system [6]. Feature selection attempts to select a subset of relevant
features from a large available feature set. It is not only minimizing the number of features, but also
evolving the performance of the system. In general, feature selection can be categorized into filter
and wrapper approaches. The filter approach is independent of the learning algorithm. It makes
use of statistical and mutual information for searching the potential features [7]. Unlike the filter
approach, the wrapper approach applies a specific learning algorithm (classifier) to evaluate the best
feature subset. Compared to the filter approach, the wrapper approach can often contribute to a better
performance. Hence, wrapper approaches are widely used in feature selection problems [6,8–10].

In a previous study, Ahmed et al. [9] proposed a differential evolution (DE) with a wheel-based
strategy to identify the subset of relevant features. Banka and Dara [11] proposed the hamming
distance-based binary particle swarm optimization (HDBPSO) to solve the high-dimensional feature
selection problem. The authors applied the hamming distance for velocity update, and the result
obtained indicated that HDBPSO was superior to the genetic algorithm (GA) and the non-dominant
sorting genetic algorithm (NSGA II). Later, Bharti and Singh [12] implemented the chaotic maps and
opposition learning strategy to enhance the performance of BPSO. In addition, the authors proposed
the fitness-based dynamic inertia weight strategy to control the value of inertia weight on particles.
Furthermore, Zorarpaci and Ozel [13] developed a hybrid differential evolution and artificial bee colony
(DEABC) for feature selection. The authors revealed that DEABC outperformed binary differential
evolution (BDE) and artificial bee colony (ABC) in choosing the significant features. Another study [14]
proposed the co-evolution binary particle swarm optimization with a multiple inertia weight strategy
(CBPSO-MIWS) for feature selection. Previous works have shown the impact of feature selection before
classification procedure.

According to the literature, conventional feature selection methods such as particle swarm
optimization (PSO) and DE have the limitations of premature convergence and early stagnation.
Therefore, different hybrid methods of PSO and DE have been developed for performance enhancement.
However, most of them are designed to solve continuous optimization and numerical problems, which
are different than feature selection problems [15,16]. Therefore, this study aimed to propose a hybrid
version of binary particle swarm optimization differential evolution (BPSODE) for tackling the feature
selection problem in EMG signals classification. The proposed BPSODE is the hybridization of binary
particle swarm optimization (BPSO) and binary differential evolution (BDE). It not only inherits the
advantages of BPSO and BDE in local and global search but is also good in escaping the local solution.
In the proposed BPSODE, the BPSO and BDE algorithms are computed in sequence, and thus, no extra
computation cost is required. Moreover, the dynamic inertia weight and dynamic crossover rate are
introduced in BPSODE for improving the performance of the algorithm. The performance of BPSODE
was validated using EMG data collected from 10 healthy subjects. To evaluate the effectiveness of the
proposed method, the binary bat algorithm (BBA) [17], binary flower pollination algorithm (BFPA) [18],
BPSO [14], and BDE [13] were used for performance comparison. Our experimental results showed
that BPSODE outperformed the other algorithms in feature selection.

The organization of paper is as follows: Section 2 details the binary particle swarm optimization
and binary differential evolution. Section 3 describes the proposed EMG pattern recognition system
and the hybrid binary particle swarm optimization differential evolution algorithm. Section 4 discusses
the experimental results and the conclusion is summarized in Section 5.
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2. Preliminary

2.1. Binary Particle Swarm Optimization

Binary particle swarm optimization (BPSO) was first proposed by Kennedy and Eberhart [19] to
solve binary optimization problems. In BPSO, the population is known as a swarm, which comprises
N particles that flow through the multidimensional search space. The particle represents the potential
solution, and it moves through the search space to seek out the best solution. Each particle searches for
the global maximum or minimum according to its own experience and knowledge [20].

For a D dimensional problem, the velocity of the particle is expressed as V = (vi1, vi2, . . . , viD)
and the position of the particle is denoted as X = (xi1, xi2, . . . , xiD), where i represents the order of
the particle in the population. In BPSO, the optimal location of each particle is known as Pbest and
the global best solution in the population is called Gbest. For each iteration t, the particle updates its
velocity as follow:

vd
i (t + 1) = w(t) × vd

i (t) + c1 × r1 ×
(
Pbestd

i (t) − xi
d(t)

)
+ c2 × r2 ×

(
Gbestd(t) − xi

d(t)
)

(1)

where x is the position of the particle, v denotes the velocity of the particle, i is the order of the particle
in the population, d is the dimension of the search space, w is the inertia weight, c1 and c2 are the
acceleration coefficients, and r1 and r2 are the two independent random numbers uniformly distributed
between 0 and 1. Then, the velocity is converted into a probability value using the sigmoid function
as follow:

S
(
vd

i (t + 1)
)
=

1

1 + e−vd
i (t+1)

(2)

Afterward, the position of the particle is updated as:

xd
i (t + 1) =

 1, If δ < S
(
vd

i (t + 1)
)

0, Otherwise
(3)

where δ is a random number uniformly distributed between 0 and 1.
In BPSO, an inertia weight is gradually decreased from a higher to a lower value in order to

ensure a well and stable balance between global and local exploration [21]. At each iteration, the inertia
weight is computed as:

w(t) = wmax − (wmax −wmin)
t
T

(4)

where wmax and wmin are the bounds on the inertia weight, t is the current iteration, and T is the
maximum number of iterations. In this study, wmax and wmin were set to 0.9 and 0.4, respectively.

2.2. Binary Differential Evolution

Differential evolution (DE) is an evolutionary heuristic approach proposed by Storn and Price [22]
to minimize the non-linear and continuous function. Originally, DE was designed to solve the
continuous value problem; for feature selection, the DE is modified into binary differential evolution
(BDE) according to Reference [13]. Binary differential evolution is a simple, direct use, and efficient
feature selection method. It is composed of three main operators, which are mutation, crossover,
and selection.

Firstly, BDE generates an initial population for a D dimensional problem randomly, where D is
the number of features that need to be optimized. During the mutation stage, three random vectors xr1,
xr2, and xr3 are randomly selected from the population for vector xi. Note that r1 , r2 , r3 , i. Then,
the difference vector is computed as follow:

di f f erence vectord
i =

{
0 If xd

r1 = xd
r2

xd
r1 Otherwise

(5)
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where i is the order of the vector in the population and d is the dimension of the vector. If the dth
dimension of xr1 is equal to xr2, then the difference vector will become 0. Otherwise, the differential
vector will become the same as xr1. Next, the mutation is performed as shown in Equation (6).

mutant vectord
i =

{
1 If di f f erence vectord

i = 1
xd

r3 Otherwise
(6)

After that, the crossover process is executed as follow:

ud
i =

{
mutant vectord

i If δ ≤ CR(t)
∣∣∣∣∣∣ d = drand

xd
i Otherwise

(7)

where u is the trial vector, x is the vector, d is the dimension of search space, CR ∈ (0,1) is the crossover
rate, drand is a random feature index distributed between 1 and D, and δ is a random number distributed
between 0 and 1.

For the selection process, if the fitness value of the trial vector is better, then the current vector
will be replaced. Otherwise, the current vector is kept for the next generation.

3. Materials and Methods

Figure 1 illustrates the flow diagram of the proposed EMG pattern recognition system. In the
first step, the EMG data are acquired from the publicly accessible EMG database. Next, the discrete
wavelet transform (DWT) is applied to decompose the EMG signals into multi-resolution coefficients.
Then, the features are extracted from the wavelet coefficients and form the feature vector. After
that, five feature selection methods including BBA, BDE, BFPA, BPSO, and BPSODE are used to
evaluate the optimal feature subset. In the final step, the k-nearest neighbor (KNN) is employed for the
classification process.
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Figure 1. Flow diagram of the proposed electromyography (EMG) pattern recognition system.

3.1. EMG Data

The Non-Invasive Adaptive Prosthetics (NinaPro) project [23] is a publicly accessible EMG database
that has previously been applied in EMG pattern recognition studies. In this study, the NinaPro
database 4 (DB4), composed of the EMG signals of twelve different hand movement types (Exercise A),
was utilized. The twelve hand movement types included index flexion, index extension, middle
flexion, middle extension, ring flexion, ring extension, little finger flexion, little finger extension, thumb
adduction, thumb abduction, thumb flexion, and thumb extension [24]. The DB4 contained the EMG
data of 10 healthy subjects. In the experiment, 12 electrodes (12 channels) were implemented. The
subjects were instructed to perform each movement type for 5 s, followed by a resting state of 3 s.
In addition, each movement type was repeated six times, and the EMG signal was sampled at the rate
of 2000 Hz [24]. Note that all resting states were removed before any further processing.

3.2. Discrete Wavelet Transform-Based Feature Extraction

Recently, discrete wavelet transform (DWT) has shown its potential and capability in biomedical
signal processing. Discrete wavelet transform has the advantage of varying the time and frequency
window, which can provide an optimal time–frequency resolution in EMG pattern recognition [25].
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Basically, DWT decomposes the EMG signal into multi-resolution by filtering the signal with a high-pass
filter, h(n) and low-pass filter, h(n). The first decomposition of DWT can be expressed as:

yhigh(k) =
∑

n
x(n) · h(2k− n) (8)

ylow(k) =
∑

n
x(n) · g(2k− n) (9)

where x(n) is the input EMG signal, and yhigh(k) and ylow(k) represent the detail and approximation,
respectively. In wavelet decomposition, detail (D) exhibits the signal at high frequency, whereas the
low-frequency component is represented by the approximation (A) [26]. Previous works indicated that
the selection of the mother wavelet and decomposition level were the main factors that can strongly
affect the performance of DWT in EMG pattern recognition. According to the finding of Reference [27],
DWT at the fourth decomposition level was employed in this work. An illustration of DWT is displayed
in Figure 2.
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As for the mother wavelet selection, twelve mother wavelets including db4, db6, db8, sym4, sym6,
sym8, bior2.2, bior3.3, bior4.4, coif3, coif4, and coif5 are investigated. From the experiment, we found
that DWT with bior4.4 offered the optimal performance in the current work. Hence, only DWT with
bior4.4 at the fourth decomposition level was applied in the rest of this paper.

In this work, five popular features, namely, mean absolute value (MAV), wavelength (WL), zero
crossing (ZC), slope sign change (SSC), and maximum fractal length (MFL) were extracted from
each wavelet coefficient to form the feature set. These features were selected due to their promising
performances in previous works [3,4,28].
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3.3. Proposed Hybrid Binary Particle Swarm Optimization Differential Evolution

In this paper, a hybrid binary particle swarm optimization differential evolution method (BPSODE)
that combines the superior capability of BPSO and BDE algorithms is proposed to solve the feature
selection problem in EMG signals classification. In the proposed BPSODE, the BPSO and BDE
algorithms are computed in sequence. For example, BPSO is computed in the first, third, and fifth
iterations, whereas the second, fourth, and sixth iterations are performed by BDE. In this way, BPSODE
can fully take the advantages of BPSO and BDE without the additional computation cost. However,
both BPSO and BDE have the limitations of premature convergence. To prevent the BPSODE from
being trapped in the local optima, two simple schemes are introduced. The first scheme is dynamic
inertia weight, which enables BPSODE to track the optimal solution in dynamic environment. The
second scheme is the dynamic crossover rate. Instead of using a fixed crossover rate, a dynamic
crossover rate is more capable of balancing the exploration and exploitation.

3.3.1. Dynamic Inertia Weight

The inertia weight is a parameter proposed by Shi and Eberhart [29] to enhance the performance
of PSO. Generally, a larger inertia weight leads to good global exploration. On the contrary, a smaller
inertia weight tends to promote the local exploration around the best solution [30]. In BPSO, the inertia
weight linearly decreases from 0.9 to 0.4 for balancing the global and local exploration. However, in the
experiment, we found that such a mechanism did not work very well in BPSODE. Thus, we applied a
dynamic inertia weight as shown in Equation (10).

w(t) = 0.5 +
r3

2
(10)

where r3 is a random number distributed between 0 and 1. Figure 3a illustrates an example of dynamic
inertia weight. As can be seen, the inertia weight was generated uniformly between 0.5 and 1. Since it is
difficult to estimate the exploration and exploitation stage, a random inertia weight is more appropriate
to be used in this dynamic environment [31].Axioms 2019, 8, x FOR PEER REVIEW 7 of 19 
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3.3.2. Dynamic Crossover Rate

The crossover rate (CR) is a parameter introduced in BDE. It controls the number of d dimension
parameter values copied from the mutant vector [32]. A higher value of CR indicates more parameters
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are duplicated from the mutant vector. By contrast, a lower CR means less parameters are reproduced
from the mutant vector. In BPSODE, the dynamic CR is proposed as shown in Equation (11).

CR(t) = 1−
( t

T

)
(11)

where t is the current iteration and T is the maximum number of iterations. An example of dynamic
crossover rate is exhibited in Figure 3b. One can see that the crossover rate was reduced from 1 to 0
as the number of iterations increased. At the beginning, a higher CR ensured more parameters were
reproduced to improve the exploration (global search). As time passed, a lower CR guaranteed the
exploitation process (local search).

Algorithm 1 demonstrates the pseudocode of BPSODE. Initially, the position of particles is
randomly initialized in binary form (bit 1 or 0). The velocity of particles is initialized to zero. Next,
the fitness of each particle is evaluated, and the Pbest and Gbest are defined. Then, BPSO (iteration with
odd number) and BDE (iteration with even number) algorithms are computed in sequence. For the
iteration with odd number, the inertia weight is updated as shown in Equation (10). Afterward,
the position and velocity of particles are updated using Equations (1) and (3), respectively. Then,
the fitness of each particle is evaluated. As for the iteration with even number, the crossover rate is
updated as shown in Equation (11). After that, the mutation and crossover operations are computed
as shown in Equations (6) and (7), respectively. From the mutation and crossover, the trial vector is
generated. The fitness of newly generated trial vector is then evaluated and compared with current
particle. If the trial vector results in better fitness, then the current particle will be replaced; otherwise,
the current particle is kept for the next iteration. At the end of each iteration, the Pbest and Gbest are
updated. The algorithm is repeated until the termination criteria (maximum number of iterations) is
satisfied. At last, the global best solution is pointed out.
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Algorithm 1. Hybrid Binary Particle Swarm Optimization Differential Evolution

Input Parameters: N, T, c1, and c2
(1) Randomly initialize a population of particles, x
(2) Evaluate the fitness of particles, F(x)
(3) Set Pbest and Gbest
(4) for t = 1 to maximum number of iterations, T

// BPSO Algorithm //

(5) if mod(t,2) = 1

(6) w = 0.5 + rand(0,1)
2

(7) for i = 1 to number of particles, N
(8) for d = 1 to number of dimension, D
(9) vd

i (t + 1) = w× vd
i (t) + c1 × r1 ×

(
Pbestd

i (t) − xd
i (t)

)
+ c2 × r2 ×

(
Gbestd(t) − xd

i (t)
)

(10) S
(
vd

i (t + 1)
)
= 1

1+exp(−vd
i (t+1))

(11) if rand(0, 1) ≤ S
(
vd

i (t + 1)
)

(12) xd
i (t + 1) = 1

(13) else
(14) xd

i (t + 1) = 0
(15) end if
(16) end for
(17) Evaluate the fitness of new particle, F(xi(t + 1))
(18) end for

// BDE Algorithm //

(19) else
(20) CR = 1−

(
t
T

)
(21) for i = 1 to number of particles, N
(22) Random select vectors xr1, xr2, xr3 and drand = rand(1, D)

(23) for d = 1 to number of dimension, D
(24) if xd

r1 = xd
r2

(25) di f f erence vectord
i = 0

(26) else
(27) di f f erence vectord

i = xd
r1

(28) end if
(29) if di f f erence vectord

i = 1
(30) mutant vectord

i = 1
(31) else
(32) mutant vectord

i = xd
r3

(33) end if
(34) if rand(0, 1) ≤ CR or d = drand
(35) ud

i = mutant vectord
i

(36) else
(37) ud

i = xd
i (t)

(38) end if
(39) end for
(40) Evaluate the fitness of trial vector, F(ui)

(41) Perform greedy selection between current particle and trial vector
(42) end for
(43) end if

// Pbest and Gbest Update //

(44) for i = 1 to number of particles, N
(45) Update Pbesti and Gbest
(46) end for
(47) end for
Output: Global best solution



Axioms 2019, 8, 79 9 of 17

3.4. Application of BPSODE for Feature Selection

In BPSODE, the position of the particle is expressed in binary form; either bit value 1 or 0, where
bit 1 and bit 0 represent the selected feature and non-selected feature, respectively. For example, given a
solution X= {0,1,1,0,0,1,1,0,0,0}, it shows that four features (2nd, 3rd, 6th, and 7th features) are selected.

As for the wrapper feature selection, the fitness function that maximizes the classification
performance and minimizes the number of features is utilized, and it can be defined as:

↓ Fitness = αER + (1− α)
|R|
|S|

(12)

ER =
No.o f wrongly predicted instances

Total number o f instances
(13)

where ER is the error rate computed by a learning algorithm, |R| is the length of the feature subset,
|S| is the total number of features, and α is the parameter that control the weight between error rate
and ratio of selected features. Considering the classification performance to be the most important
measurement, the α was set to 0.9 in this work.

For fitness evaluation, the k-nearest neighbor (KNN) with a Euclidean distance and k = 1 was used
as the learning algorithm. The KNN was chosen because it is a common, fast, and simple machine
learning algorithm that has been widely applied in feature selection studies [33,34]. For performance
evaluation, the 10-fold cross validation method was implemented. In this scheme, the data were
randomly divided into 10 equal parts. Each part took turns testing while the remaining parts (nine parts)
were used for the training set. The results obtained from the 10 folds were then averaged and recorded.

4. Results and Discussions

The EMG signals of the 10 subjects were gathered from the NinaPro database 4, comprising
10 different datasets. In the next step, DWT was applied to decompose the EMG signals into
multi-resolution coefficients. It is worth noting that DWT produced eight coefficients (four details and
four approximations) at the fourth decomposition level. Then, five features were extracted from each
wavelet coefficient, and the feature set was formed. In total, 480 features (12 channels × 5 features ×
8 coefficients) were extracted from each movement from each subject. On the other hand, 72 instances
(12 hand movement types × 6 repetitions) were acquired from each subject. As a result, for each
subject (dataset), a feature vector with a matrix of 72 × 480 was formed. In order to prevent numerical
problems, the features were normalized between 0 and 1. Afterward, the feature selection algorithms
were used to select the most informative feature subset. At last, the selected features were then fed into
the KNN for the classification of twelve different hand movement types (12 classes). The classification
process is critically important because it shows how accurate a myoelectric prosthetic can be. In a
nutshell, a myoelectric prosthetic with higher accuracy allows the users to perform the hand movement
types accurately.

4.1. Comparison Algorithms and Evaluation Metrics

In this study, five feature selection algorithms including BBA [17], BFPA [18], BPSO [14], BDE [13],
and BPSODE were used to evaluate the best feature subset (best combination of features and channels).
The specific parameter setting of utilized algorithms are given in Table 1. To ensure fair comparison,
the maximum number of iterations (T) was fixed at 100. On the one hand, the population size (N)
was chosen at 80. Note that the analysis for the selection of the population size will be discussed
in Section 4.2.1. All analyses were conducted in MATLAB 9.3 using a computer with an Intel Core
i5-9400F CPU 2.90 GHz and 16.0 GB RAM.
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Table 1. Parameter settings of the hybrid binary particle swarm optimization differential evolution
(BPSODE), binary bat algorithm (BBA), binary differential evolution (BDE), binary particle swarm
optimization (BPSO) and binary flower pollination algorithm (BFPA).

Algorithm Parameter Value

BPSODE Acceleration coefficient, c1 and c2 2
Bound on velocity (−6,6)

BDE Crossover rate, CR 1
BPSO Acceleration coefficient, c1 and c2 2

Inertia weight, w 0.9–0.4
Bound on velocity (−6,6)

BFPA Switch probability, P 0.8
Levy component, λ 1.5

BBA Maximum frequency, fmax 2
Minimum frequency, fmin 0

Control coefficient, α and γ 0.9
Loudness, A (1,2)
Pulse rate, r (0,1)

To evaluate the effectiveness of the proposed method, four statistical metrics including accuracy,
feature selection ratio (FSR), precision, and F-measure were calculated, and they are defined as
follows [35–37]:

Accuracy =
No.o f correctly classi f ied instances

Total number o f instances
× 100 (14)

FSR =
|R|
|S|

(15)

Precision =
TP

TP + FP
(16)

F-measure =
2TP

2TP + FP + FN
(17)

where |R| is the length of the feature subset, |S| is the total number of features, TP is the true positive,
FP is the false positive, and FN is the false negative. To obtain the statistical results, each algorithm
(i.e., BBA, BPSO, BDE, BFPA, and BPSODE) was executed for 20 independent runs. Then, the averaged
results obtained from 20 runs were recorded for performance comparison.

4.2. Experimental Results and Analysis

4.2.1. Effect of Population Size

In the first part of the experiment, we studied the effect of population size. Briefly, population
size is one of the key factors that can strongly affect the performance of BPSODE in feature selection.
A higher population size can usually offer better performance; however, more computation time is
required [38]. In this paper, five different population sizes (i.e., 20, 40, 60, 80 and 100) were investigated.
Figure 4 illustrates the boxplot of BPSODE with five different population sizes across 10 subjects.
We used accuracy as the evaluation metric since it is the most important measurement in this work.
From Figure 4, it is noted that the optimal result was seen with the population size of 80. In comparison
with other population sizes, the population size of 80 contributed to the highest median value (red line
in the box) of 92.64%. The result shows that the population size of 80 overwhelmed its competitors in
the current work. Thereafter, only the population size of 80 was applied in the rest of this paper.
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4.2.2. Comparison Results

In the second part of the experiment, we examined the efficacy of BPSODE by comparing its
performance with BBA, BDE, BPSO, and BFPA. Figure 5 illustrates the classification performance
of five different feature selection methods on 10 subjects (detailed results on accuracy can be found
in Table 2). As can be seen, the accuracies achieved by BDE and BPSO were relatively poor. This
result highlights that the features selected by BDE and BPSO might contain redundant and irrelevant
information, which caused them to be trapped in the local optima at the early stagnation.Axioms 2019, 8, x FOR PEER REVIEW 12 of 19 
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Table 2. Experimental results of five different feature selection methods on 10 subjects. The best result
of each metric is highlighted in bold text.

Subject Metrics Feature Selection Method

BPSODE BBA BDE BFPA BPSO

1 Accuracy (%) 88.29 ± 1.58 88.64 ± 1.64 87.14 ± 1.67 87.79 ± 1.70 88.21 ± 1.60
Feature

selection ratio
(FSR)

0.4196 ± 0.0283 0.4462 ± 0.0260 0.4926 ± 0.0329 0.5525 ± 0.0420 0.4486 ± 0.0250

Precision 0.9034 ± 0.0108 0.9049 ± 0.0128 0.8941 ± 0.0156 0.9001 ± 0.0130 0.9023 ± 0.0120
F-measure 0.8852 ± 0.0148 0.8880 ± 0.0165 0.8732 ± 0.0180 0.8798 ± 0.0169 0.8843 ± 0.0152

2 Accuracy (%) 89.93 ± 1.35 90.43 ± 1.54 90.43 ± 1.24 90.50 ± 1.25 90.21 ± 1.16
FSR 0.4079 ± 0.0324 0.4424 ± 0.0167 0.4920 ± 0.0342 0.5594 ± 0.0550 0.4467 ± 0.0184

Precision 0.9143 ± 0.0098 0.9182 ± 0.0132 0.9169 ± 0.0101 0.9190 ± 0.0106 0.9153 ± 0.0108
F-measure 0.9018 ± 0.0120 0.9063 ± 0.0146 0.9061 ± 0.0111 0.9069 ± 0.0115 0.9042 ± 0.0105

3 Accuracy (%) 87.86 ± 3.09 85.71 ± 2.22 83.43 ± 1.70 85.36 ± 1.60 86.14 ± 1.68
FSR 0.4386 ± 0.0289 0.4528 ± 0.0210 0.4981 ± 0.0489 0.5811 ± 0.0488 0.4636 ± 0.0185

Precision 0.8949 ± 0.0303 0.8727 ± 0.0245 0.8519 ± 0.0181 0.8709 ± 0.0188 0.8779 ± 0.0186
F-measure 0.8810 ± 0.0326 0.8588 ± 0.0227 0.8359 ± 0.0168 0.8555 ± 0.0160 0.8632 ± 0.0182

4 Accuracy (%) 87.93 ± 1.35 87.79 ± 1.43 86.86 ± 1.89 87.79 ± 1.35 87.43 ± 1.36
FSR 0.4196 ± 0.0343 0.4393 ± 0.0207 0.4859 ± 0.0233 0.5581 ± 0.0523 0.4444 ± 0.0179

Precision 0.8891 ± 0.0139 0.8870 ± 0.0146 0.8782 ± 0.0205 0.8880 ± 0.0136 0.8854 ± 0.0136
F-measure 0.8754 ± 0.0135 0.8736 ± 0.0146 0.8653 ± 0.0194 0.8742 ± 0.0140 0.8705 ± 0.0136

5 Accuracy (%) 95.93 ± 1.41 95.43 ± 1.19 94.07 ± 1.49 95.43 ± 0.99 95.29 ± 1.32
FSR 0.4157 ± 0.0318 0.4333 ± 0.0189 0.4820 ± 0.0168 0.5546 ± 0.0402 0.4426 ± 0.0221

Precision 0.9654 ± 0.0103 0.9603 ± 0.0101 0.9505 ± 0.0121 0.9607 ± 0.0086 0.9593 ± 0.0111
F-measure 0.9593 ± 0.0141 0.9544 ± 0.0119 0.9411 ± 0.0144 0.9546 ± 0.0099 0.9525 ± 0.0134

6 Accuracy (%) 92.29 ± 1.42 92.64 ± 1.56 90.71 ± 1.50 91.86 ± 1.24 92.21 ± 1.57
FSR 0.4225 ± 0.0295 0.4436 ± 0.0216 0.4876 ± 0.0176 0.5663 ± 0.0434 0.4507 ± 0.0158

Precision 0.9355 ± 0.0113 0.9389 ± 0.0121 0.9234 ± 0.0098 0.9338 ± 0.0087 0.9351 ± 0.0121
F-measure 0.9258 ± 0.0136 0.9289 ± 0.0147 0.9111 ± 0.0152 0.9215 ± 0.0123 0.9251 ± 0.0151

7 Accuracy (%) 97.71 ± 0.97 97.86 ± 0.87 97.86 ± 0.98 97.86 ± 0.98 97.71 ± 1.17
FSR 0.3824 ± 0.0361 0.4031 ± 0.0165 0.4627 ± 0.0111 0.4717 ± 0.0348 0.4149 ± 0.0200

Precision 0.9788 ± 0.0087 0.9798 ± 0.0079 0.9799 ± 0.0092 0.9799 ± 0.0092 0.9789 ± 0.0102
F-measure 0.9774 ± 0.0098 0.9785 ± 0.0092 0.9786 ± 0.0104 0.9786 ± 0.0104 0.9772 ± 0.0121

8 Accuracy (%) 93.00 ± 1.60 92.36 ± 1.33 91.14 ± 1.44 92.29 ± 1.34 92.93 ± 1.43
FSR 0.4426 ± 0.0285 0.4536 ± 0.0272 0.5169 ± 0.0522 0.5676 ± 0.0485 0.4593 ± 0.0202

Precision 0.9338 ± 0.0143 0.9278 ± 0.0125 0.9164 ± 0.0132 0.9268 ± 0.0121 0.9323 ± 0.0131
F-measure 0.9295 ± 0.0160 0.9229 ± 0.0133 0.9110 ± 0.0143 0.9225 ± 0.0135 0.9287 ± 0.0141

9 Accuracy (%) 94.79 ± 1.25 94.93 ± 1.57 94.57 ± 1.94 94.86 ± 2.24 94.36 ± 1.64
FSR 0.4065 ± 0.0411 0.4139 ± 0.0203 0.4813 ± 0.0270 0.5217 ± 0.0557 0.4332 ± 0.0207

Precision 0.9563 ± 0.0097 0.9575 ± 0.0115 0.9543 ± 0.0161 0.9566 ± 0.0180 0.9518 ± 0.0143
F-measure 0.9472 ± 0.0132 0.9483 ± 0.0165 0.9453 ± 0.0197 0.9478 ± 0.0235 0.9428 ± 0.0172

10 Accuracy (%) 97.29 ± 1.13 96.5 ± 1.64 95.57 ± 1.38 97.00 ± 0.92 95.64 ± 1.35
FSR 0.4214 ± 0.0380 0.4343 ± 0.0177 0.4985 ± 0.0433 0.5785 ± 0.0314 0.4408 ± 0.0199

Precision 0.9758 ± 0.0101 0.9680 ± 0.0154 0.9598 ± 0.0132 0.9731 ± 0.0087 0.9612 ± 0.0117
F-measure 0.9731 ± 0.0114 0.9652 ± 0.0167 0.9561 ± 0.0142 0.9705 ± 0.0094 0.9570 ± 0.0129

From Figure 5, it can be seen that BPSODE reached the highest accuracy in most cases (five out of
ten subjects). Especially for Subject 3, a great increment of 4.43% accuracy was found as compared
to BDE. Based on the results obtained, the best feature selection method was found to be BPSODE,
followed by BBA. On average across 10 subjects, the experimental result showed that BPSODE overtook
other the algorithms with the highest mean accuracy of 92.5%. Obviously, BPSODE has proven its
capability in effectively searching for significant features in the feature space.

Table 2 demonstrates the experimental results of accuracy, feature selection ratio (FSR), precision,
and F-measure of the five different feature selection methods on 10 subjects. In this table, the best
result of each metric is highlighted in bold text. A higher FSR means that more features are selected,
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while a lower FSR indicates less feature are selected by the algorithm. On the one hand, the higher the
accuracy, precision, and F-measure, the better the performances.

Inspecting the result on FSR, it is seen that roughly half of the original features were eliminated,
especially for BPSODE, which facilitated a smaller number of features while keeping a high classification
performance. Based on the result obtained, the lowest FSR was achieved by BPSODE in all cases.
The reduction in the number of features not only decreased the complexity of the recognition system,
but also enhanced the prediction accuracy.

From Table 2, it can be seen that BPSODE scored the highest precision and F-measure values for
five subjects. These findings suggest that BPSODE is more capable of solving feature selection problems
in EMG signals classification. The superiority of BPSODE mainly comes from the hybridization
strategy, which adopts the advantages of both BDE and BPSO for searching significant features in the
feature space.

Furthermore, the statistical t-test with 95% confidence level was used to examine whether there
was a significant difference in the classification performance between BPSODE and other competitors.
The results of the t-tests with p-values are presented in Table 3. In this table, the symbols “w/t/l” indicate
that BPSODE was significantly better to (win), equal to (tie), and significantly worse to (lose) other
feature selection methods. By applying the t-test, it shows that BPSODE was significantly better than
BDE and BPSO (p-value < 0.05) with at least three subjects. In addition, BPSODE did not provide any
significant worse results against its competitors. This again validates the efficiency of BPSODE for
solving the feature selection problem in EMG signals classification.

Table 3. p-Value of the t-test on 10 subjects.

Subject p-Value

BBA BDE BFPA BPSO

1 0.506287 0.056945 0.413356 0.847362
2 0.217023 0.109897 0.088031 0.384724
3 0.010163 2.00 × 10−5 0.018040 0.001725
4 0.629456 0.031698 0.666264 0.049260
5 0.109897 0.000358 0.129670 0.058264
6 0.425133 0.000462 0.249168 0.870789
7 0.605826 0.605826 0.605826 1.000000
8 0.131348 0.000265 0.135088 0.803685
9 0.693922 0.651311 0.894854 0.186411
10 0.085574 0.000499 0.329877 0.000490

Win (w)/tie
(t)/lose(l) 1/9/0 6/4/0 1/9/0 3/7/0

Figure 6 illustrates the convergence curve of the five different feature selection methods on
10 subjects. Note that the fitness is the average fitness values obtained from 20 runs. As can be seen,
BPSODE achieved the lowest fitness value on most subjects, followed by BBA. Through the observation
in Figure 6, BDE converged faster, but without acceleration. This explains why BDE did not work
very well for high-dimensional feature selection. On the one side, one can see that BPSO and BBA
converged faster at the initial stage. However, as time (iteration) passed, BPSO and BBA were trapped
in the local optima, even though BPSODE did not give the fastest convergence speed. Nevertheless,
BPSODE kept tracking for the global optimum, thus leading to a very good diversity. As a result,
BPSODE overtook BBA, BFPA, BPSO, and BDE in evaluating the most informative feature subset.
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Table 4 outlines the computational cost of the five different feature selection methods on 10 subjects.
As can be observed, BPSODE was computationally efficient in finding the best feature subset.
In comparison with BPSO and BDE, BPSODE did not show much of an increment in computation time.
This was because in BPSODE, the BPSO and BDE algorithms are computed in sequence, and thus,
no additional computation cost is needed for the evaluations.

Table 4. Computational cost of the five different feature selection methods on 10 subjects.

Subject Average Computational Time(s)

BPSODE BBA BDE BFPA BPSO

1 11.2170 9.6904 11.0745 10.9240 13.9385
2 11.4169 9.5965 11.3315 10.9586 13.6228
3 11.5064 9.7207 11.0580 11.4189 13.6346
4 11.6714 9.3344 11.2869 10.6936 13.4868
5 11.3360 9.3501 11.5490 11.0549 13.3068
6 11.5847 9.3415 11.2253 11.3795 13.2607
7 11.5799 9.2611 11.5731 11.1553 13.0535
8 11.8117 9.2501 11.9112 11.3934 13.3610
9 11.5575 9.1336 11.8026 11.2800 13.4043
10 11.7899 9.2060 11.7631 11.4669 13.3526

In this paper, we proposed BPSODE to solve feature selection problems in EMG signals
classification. The BPSODE is the hybridization of BPSO and BDE, which inherits the advantages of
both BPSO and BDE in feature selection. From the experiments, it can be inferred that the performance
of BPSODE was superior against BPSO and BDE. In terms of accuracy, FSR, precision, and F-measure
values, BPSODE proved to be the most powerful algorithm in this work.
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The following observations explain why BPSODE outperformed BPSO and BDE in feature
selection. Firstly, the hybridization of BPSO and BDE allowed a good exchange between exploitation
and exploration. This restricts BPSODE from being trapped in the local optima. Secondly, a dynamic
crossover rate offered a high diversity in the searching process. Lastly, the implementation of a dynamic
inertia weight improved the convergence, which enhanced the performance of BPSODE in searching
for the potential solution.

On the whole, the proposed BPSODE outperformed other conventional feature selection methods
in exploring the feature search space. The BPSODE not only enhanced the BPSO algorithm with the
aid of BDE in exploration, but also prevented itself from being trapped in the local solution. The
present study showed that proper hybridization was able to overcome the limitations of two different
algorithms leading to promising results.

5. Conclusions

In this study, a hybrid binary particle swarm optimization differential evolution (BPSODE) was
proposed to solve the feature selection problem in EMG signals classification. In BPSODE, the BPSO and
BDE algorithms are computed in sequence, hence, no extra computational cost is required. Additionally,
two simple schemes, the dynamic inertia weight and dynamic crossover rate were introduced to
improve the convergence and diversity of BPSODE in the searching process. In comparison with BBA,
BFPA, BDE, and BPSO, our BPSODE can effectively remove the redundant features and maximize the
classification accuracy. Successively, BPSODE overtook other algorithms in terms of the classification
performance, FSR, precision, and F-measure values. Therefore, it can be inferred that BPSODE is a
powerful feature selection tool, and BPSODE can be useful in engineering, rehabilitation, and clinical
applications. In the future, the hybridization of other feature selection methods is recommended for
tackling feature selection problems.
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