147 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Perbaikan Segmentasi Pembuluh Darah Tipis Pada Citra Retina Menggunakan Fuzzy Entropy

    Get PDF
    Diabetic Retinopathi adalah kelainan pembuluh darah retina pada mata yang diakibatkan komplikasi penyakit diabetes. Deteksi lebih dini diperlukan agar kelainan ini dapat ditangani secara cepat dan tepat. Kelainan ini ditandai dengan melemahnya bagian pembuluh darah tipis akibat tersumbatnya aliran darah kemudian menyebabkan bengkak pada mata bahkan kebutaan. Oleh karena itu diperlukan metode analisa pembuluh darah retina melalui proses segmentasi pembuluh darah terutama pada bagian penting yaitu pembuluh darah tipis. Peneliti mengusulkan penggabungan metode perbaikan pembuluh darah tipis atau yang dikenal dengan Thin Vessel Enhancement dan Fuzzy Entropy. Thin Vessel Enhancement berfungsi untuk memperbaiki  citra agar dapat mengekstrak lebih banyak bagian pembuluh darah khususnya pembluh darah tipis,  sedangkan Fuzzy Entropy dapat menentukan nilai optimal threshold berdasarkan nilai entropy pada membership function. Segmentasi yang dihasilkan dibagi menjadi 3 kategori yaitu pembuluh darah utama, medium, dan tipis. Uji coba dilakukan terhadap metode Thin Vessel Enhancement menggunakan 1 kernel dan Fuzzy Entropy dari nilai threshold ke-1 maka diperoleh nilai accuracy, sensitivity, dan specivicity sebesar 94.81%, 66.83%, dan 97.51%

    복부 CT에서 간과 혈관 분할 기법

    Get PDF
    학위논문(박사)--서울대학교 대학원 :공과대학 컴퓨터공학부,2020. 2. 신영길.복부 전산화 단층 촬영 (CT) 영상에서 정확한 간 및 혈관 분할은 체적 측정, 치료 계획 수립 및 추가적인 증강 현실 기반 수술 가이드와 같은 컴퓨터 진단 보조 시스템을 구축하는데 필수적인 요소이다. 최근 들어 컨볼루셔널 인공 신경망 (CNN) 형태의 딥 러닝이 많이 적용되면서 의료 영상 분할의 성능이 향상되고 있지만, 실제 임상에 적용할 수 있는 높은 일반화 성능을 제공하기는 여전히 어렵다. 또한 물체의 경계는 전통적으로 영상 분할에서 매우 중요한 요소로 이용되었지만, CT 영상에서 간의 불분명한 경계를 추출하기가 어렵기 때문에 현대 CNN에서는 이를 사용하지 않고 있다. 간 혈관 분할 작업의 경우, 복잡한 혈관 영상으로부터 학습 데이터를 만들기 어렵기 때문에 딥 러닝을 적용하기가 어렵다. 또한 얇은 혈관 부분의 영상 밝기 대비가 약하여 원본 영상에서 식별하기가 매우 어렵다. 본 논문에서는 위 언급한 문제들을 해결하기 위해 일반화 성능이 향상된 CNN과 얇은 혈관을 포함하는 복잡한 간 혈관을 정확하게 분할하는 알고리즘을 제안한다. 간 분할 작업에서 우수한 일반화 성능을 갖는 CNN을 구축하기 위해, 내부적으로 간 모양을 추정하는 부분이 포함된 자동 컨텍스트 알고리즘을 제안한다. 또한, CNN을 사용한 학습에 경계선의 개념이 새롭게 제안된다. 모호한 경계부가 포함되어 있어 전체 경계 영역을 CNN에 훈련하는 것은 매우 어렵기 때문에 반복되는 학습 과정에서 인공 신경망이 스스로 예측한 확률에서 부정확하게 추정된 부분적 경계만을 사용하여 인공 신경망을 학습한다. 실험적 결과를 통해 제안된 CNN이 다른 최신 기법들보다 정확도가 우수하다는 것을 보인다. 또한, 제안된 CNN의 일반화 성능을 검증하기 위해 다양한 실험을 수행한다. 간 혈관 분할에서는 간 내부의 관심 영역을 지정하기 위해 앞서 획득한 간 영역을 활용한다. 정확한 간 혈관 분할을 위해 혈관 후보 점들을 추출하여 사용하는 알고리즘을 제안한다. 확실한 후보 점들을 얻기 위해, 삼차원 영상의 차원을 먼저 최대 강도 투영 기법을 통해 이차원으로 낮춘다. 이차원 영상에서는 복잡한 혈관의 구조가 보다 단순화될 수 있다. 이어서, 이차원 영상에서 혈관 분할을 수행하고 혈관 픽셀들은 원래의 삼차원 공간상으로 역 투영된다. 마지막으로, 전체 혈관의 분할을 위해 원본 영상과 혈관 후보 점들을 모두 사용하는 새로운 레벨 셋 기반 알고리즘을 제안한다. 제안된 알고리즘은 복잡한 구조가 단순화되고 얇은 혈관이 더 잘 보이는 이차원 영상에서 얻은 후보 점들을 사용하기 때문에 얇은 혈관 분할에서 높은 정확도를 보인다. 실험적 결과에 의하면 제안된 알고리즘은 잘못된 영역의 추출 없이 다른 레벨 셋 기반 알고리즘들보다 우수한 성능을 보인다. 제안된 알고리즘은 간과 혈관을 분할하는 새로운 방법을 제시한다. 제안된 자동 컨텍스트 구조는 사람이 디자인한 학습 과정이 일반화 성능을 크게 향상할 수 있다는 것을 보인다. 그리고 제안된 경계선 학습 기법으로 CNN을 사용한 영상 분할의 성능을 향상할 수 있음을 내포한다. 간 혈관의 분할은 이차원 최대 강도 투영 기반 이미지로부터 획득된 혈관 후보 점들을 통해 얇은 혈관들이 성공적으로 분할될 수 있음을 보인다. 본 논문에서 제안된 알고리즘은 간의 해부학적 분석과 자동화된 컴퓨터 진단 보조 시스템을 구축하는 데 매우 중요한 기술이다.Accurate liver and its vessel segmentation on abdominal computed tomography (CT) images is one of the most important prerequisites for computer-aided diagnosis (CAD) systems such as volumetric measurement, treatment planning, and further augmented reality-based surgical guide. In recent years, the application of deep learning in the form of convolutional neural network (CNN) has improved the performance of medical image segmentation, but it is difficult to provide high generalization performance for the actual clinical practice. Furthermore, although the contour features are an important factor in the image segmentation problem, they are hard to be employed on CNN due to many unclear boundaries on the image. In case of a liver vessel segmentation, a deep learning approach is impractical because it is difficult to obtain training data from complex vessel images. Furthermore, thin vessels are hard to be identified in the original image due to weak intensity contrasts and noise. In this dissertation, a CNN with high generalization performance and a contour learning scheme is first proposed for liver segmentation. Secondly, a liver vessel segmentation algorithm is presented that accurately segments even thin vessels. To build a CNN with high generalization performance, the auto-context algorithm is employed. The auto-context algorithm goes through two pipelines: the first predicts the overall area of a liver and the second predicts the final liver using the first prediction as a prior. This process improves generalization performance because the network internally estimates shape-prior. In addition to the auto-context, a contour learning method is proposed that uses only sparse contours rather than the entire contour. Sparse contours are obtained and trained by using only the mispredicted part of the network's final prediction. Experimental studies show that the proposed network is superior in accuracy to other modern networks. Multiple N-fold tests are also performed to verify the generalization performance. An algorithm for accurate liver vessel segmentation is also proposed by introducing vessel candidate points. To obtain confident vessel candidates, the 3D image is first reduced to 2D through maximum intensity projection. Subsequently, vessel segmentation is performed from the 2D images and the segmented pixels are back-projected into the original 3D space. Finally, a new level set function is proposed that utilizes both the original image and vessel candidate points. The proposed algorithm can segment thin vessels with high accuracy by mainly using vessel candidate points. The reliability of the points can be higher through robust segmentation in the projected 2D images where complex structures are simplified and thin vessels are more visible. Experimental results show that the proposed algorithm is superior to other active contour models. The proposed algorithms present a new method of segmenting the liver and its vessels. The auto-context algorithm shows that a human-designed curriculum (i.e., shape-prior learning) can improve generalization performance. The proposed contour learning technique can increase the accuracy of a CNN for image segmentation by focusing on its failures, represented by sparse contours. The vessel segmentation shows that minor vessel branches can be successfully segmented through vessel candidate points obtained by reducing the image dimension. The algorithms presented in this dissertation can be employed for later analysis of liver anatomy that requires accurate segmentation techniques.Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Problem statement 3 1.3 Main contributions 6 1.4 Contents and organization 9 Chapter 2 Related Works 10 2.1 Overview 10 2.2 Convolutional neural networks 11 2.2.1 Architectures of convolutional neural networks 11 2.2.2 Convolutional neural networks in medical image segmentation 21 2.3 Liver and vessel segmentation 37 2.3.1 Classical methods for liver segmentation 37 2.3.2 Vascular image segmentation 40 2.3.3 Active contour models 46 2.3.4 Vessel topology-based active contour model 54 2.4 Motivation 60 Chapter 3 Liver Segmentation via Auto-Context Neural Network with Self-Supervised Contour Attention 62 3.1 Overview 62 3.2 Single-pass auto-context neural network 65 3.2.1 Skip-attention module 66 3.2.2 V-transition module 69 3.2.3 Liver-prior inference and auto-context 70 3.2.4 Understanding the network 74 3.3 Self-supervising contour attention 75 3.4 Learning the network 81 3.4.1 Overall loss function 81 3.4.2 Data augmentation 81 3.5 Experimental Results 83 3.5.1 Overview 83 3.5.2 Data configurations and target of comparison 84 3.5.3 Evaluation metric 85 3.5.4 Accuracy evaluation 87 3.5.5 Ablation study 93 3.5.6 Performance of generalization 110 3.5.7 Results from ground-truth variations 114 3.6 Discussion 116 Chapter 4 Liver Vessel Segmentation via Active Contour Model with Dense Vessel Candidates 119 4.1 Overview 119 4.2 Dense vessel candidates 124 4.2.1 Maximum intensity slab images 125 4.2.2 Segmentation of 2D vessel candidates and back-projection 130 4.3 Clustering of dense vessel candidates 135 4.3.1 Virtual gradient-assisted regional ACM 136 4.3.2 Localized regional ACM 142 4.4 Experimental results 145 4.4.1 Overview 145 4.4.2 Data configurations and environment 146 4.4.3 2D segmentation 146 4.4.4 ACM comparisons 149 4.4.5 Evaluation of bifurcation points 154 4.4.6 Computational performance 159 4.4.7 Ablation study 160 4.4.8 Parameter study 162 4.5 Application to portal vein analysis 164 4.6 Discussion 168 Chapter 5 Conclusion and Future Works 170 Bibliography 172 초록 197Docto

    RVD: A Handheld Device-Based Fundus Video Dataset for Retinal Vessel Segmentation

    Full text link
    Retinal vessel segmentation is generally grounded in image-based datasets collected with bench-top devices. The static images naturally lose the dynamic characteristics of retina fluctuation, resulting in diminished dataset richness, and the usage of bench-top devices further restricts dataset scalability due to its limited accessibility. Considering these limitations, we introduce the first video-based retinal dataset by employing handheld devices for data acquisition. The dataset comprises 635 smartphone-based fundus videos collected from four different clinics, involving 415 patients from 50 to 75 years old. It delivers comprehensive and precise annotations of retinal structures in both spatial and temporal dimensions, aiming to advance the landscape of vasculature segmentation. Specifically, the dataset provides three levels of spatial annotations: binary vessel masks for overall retinal structure delineation, general vein-artery masks for distinguishing the vein and artery, and fine-grained vein-artery masks for further characterizing the granularities of each artery and vein. In addition, the dataset offers temporal annotations that capture the vessel pulsation characteristics, assisting in detecting ocular diseases that require fine-grained recognition of hemodynamic fluctuation. In application, our dataset exhibits a significant domain shift with respect to data captured by bench-top devices, thus posing great challenges to existing methods. In the experiments, we provide evaluation metrics and benchmark results on our dataset, reflecting both the potential and challenges it offers for vessel segmentation tasks. We hope this challenging dataset would significantly contribute to the development of eye disease diagnosis and early prevention

    Pixel-level semantic understanding of ophthalmic images and beyond

    Get PDF
    Computer-assisted semantic image understanding constitutes the substrate of applications that range from biomarker detection to intraoperative guidance or street scene understanding for self-driving systems. This PhD thesis is on the development of deep learning-based, pixel-level, semantic segmentation methods for medical and natural images. For vessel segmentation in OCT-A, a method comprising iterative refinement of the extracted vessel maps and an auxiliary loss function that penalizes structural inaccuracies, is proposed and tested on data captured from real clinical conditions comprising various pathological cases. Ultimately, the presented method enables the extraction of a detailed vessel map of the retina with potential applications to diagnostics or intraoperative localization. Furthermore, for scene segmentation in cataract surgery, the major challenge of class imbalance is identified among several factors. Subsequently, a method addressing it is proposed, achieving state-of-the-art performance on a challenging public dataset. Accurate semantic segmentation in this domain can be used to monitor interactions between tools and anatomical parts for intraoperative guidance and safety. Finally, this thesis proposes a novel contrastive learning framework for supervised semantic segmentation, that aims to improve the discriminative power of features in deep neural networks. The proposed approach leverages contrastive loss function applied both at multiple model layers and across them. Importantly, the proposed framework is easy to combine with various model architectures and is experimentally shown to significantly improve performance on both natural and medical domain

    Computational Analysis of Fundus Images: Rule-Based and Scale-Space Models

    Get PDF
    Fundus images are one of the most important imaging examinations in modern ophthalmology because they are simple, inexpensive and, above all, noninvasive. Nowadays, the acquisition and storage of highresolution fundus images is relatively easy and fast. Therefore, fundus imaging has become a fundamental investigation in retinal lesion detection, ocular health monitoring and screening programmes. Given the large volume and clinical complexity associated with these images, their analysis and interpretation by trained clinicians becomes a timeconsuming task and is prone to human error. Therefore, there is a growing interest in developing automated approaches that are affordable and have high sensitivity and specificity. These automated approaches need to be robust if they are to be used in the general population to diagnose and track retinal diseases. To be effective, the automated systems must be able to recognize normal structures and distinguish them from pathological clinical manifestations. The main objective of the research leading to this thesis was to develop automated systems capable of recognizing and segmenting retinal anatomical structures and retinal pathological clinical manifestations associated with the most common retinal diseases. In particular, these automated algorithms were developed on the premise of robustness and efficiency to deal with the difficulties and complexity inherent in these images. Four objectives were considered in the analysis of fundus images. Segmentation of exudates, localization of the optic disc, detection of the midline of blood vessels, segmentation of the vascular network and detection of microaneurysms. In addition, we also evaluated the detection of diabetic retinopathy on fundus images using the microaneurysm detection method. An overview of the state of the art is presented to compare the performance of the developed approaches with the main methods described in the literature for each of the previously described objectives. To facilitate the comparison of methods, the state of the art has been divided into rulebased methods and machine learningbased methods. In the research reported in this paper, rulebased methods based on image processing methods were preferred over machine learningbased methods. In particular, scalespace methods proved to be effective in achieving the set goals. Two different approaches to exudate segmentation were developed. The first approach is based on scalespace curvature in combination with the local maximum of a scalespace blob detector and dynamic thresholds. The second approach is based on the analysis of the distribution function of the maximum values of the noise map in combination with morphological operators and adaptive thresholds. Both approaches perform a correct segmentation of the exudates and cope well with the uneven illumination and contrast variations in the fundus images. Optic disc localization was achieved using a new technique called cumulative sum fields, which was combined with a vascular enhancement method. The algorithm proved to be reliable and efficient, especially for pathological images. The robustness of the method was tested on 8 datasets. The detection of the midline of the blood vessels was achieved using a modified corner detector in combination with binary philtres and dynamic thresholding. Segmentation of the vascular network was achieved using a new scalespace blood vessels enhancement method. The developed methods have proven effective in detecting the midline of blood vessels and segmenting vascular networks. The microaneurysm detection method relies on a scalespace microaneurysm detection and labelling system. A new approach based on the neighbourhood of the microaneurysms was used for labelling. Microaneurysm detection enabled the assessment of diabetic retinopathy detection. The microaneurysm detection method proved to be competitive with other methods, especially with highresolution images. Diabetic retinopathy detection with the developed microaneurysm detection method showed similar performance to other methods and human experts. The results of this work show that it is possible to develop reliable and robust scalespace methods that can detect various anatomical structures and pathological features of the retina. Furthermore, the results obtained in this work show that although recent research has focused on machine learning methods, scalespace methods can achieve very competitive results and typically have greater independence from image acquisition. The methods developed in this work may also be relevant for the future definition of new descriptors and features that can significantly improve the results of automated methods.As imagens do fundo do olho são hoje um dos principais exames imagiológicos da oftalmologia moderna, pela sua simplicidade, baixo custo e acima de tudo pelo seu carácter nãoinvasivo. A aquisição e armazenamento de imagens do fundo do olho com alta resolução é também relativamente simples e rápida. Desta forma, as imagens do fundo do olho são um exame fundamental na identificação de alterações retinianas, monitorização da saúde ocular, e em programas de rastreio. Considerando o elevado volume e complexidade clínica associada a estas imagens, a análise e interpretação das mesmas por clínicos treinados tornase uma tarefa morosa e propensa a erros humanos. Assim, há um interesse crescente no desenvolvimento de abordagens automatizadas, acessíveis em custo, e com uma alta sensibilidade e especificidade. Estas devem ser robustas para serem aplicadas à população em geral no diagnóstico e seguimento de doenças retinianas. Para serem eficazes, os sistemas de análise têm que conseguir detetar e distinguir estruturas normais de sinais patológicos. O objetivo principal da investigação que levou a esta tese de doutoramento é o desenvolvimento de sistemas automáticos capazes de detetar e segmentar as estruturas anatómicas da retina, e os sinais patológicos retinianos associados às doenças retinianas mais comuns. Em particular, estes algoritmos automatizados foram desenvolvidos segundo as premissas de robustez e eficácia para lidar com as dificuldades e complexidades inerentes a estas imagens. Foram considerados quatro objetivos de análise de imagens do fundo do olho. São estes, a segmentação de exsudados, a localização do disco ótico, a deteção da linha central venosa dos vasos sanguíneos e segmentação da rede vascular, e a deteção de microaneurismas. De acrescentar que usando o método de deteção de microaneurismas, avaliouse também a capacidade de deteção da retinopatia diabética em imagens do fundo do olho. Para comparar o desempenho das metodologias desenvolvidas neste trabalho, foi realizado um levantamento do estado da arte, onde foram considerados os métodos mais relevantes descritos na literatura para cada um dos objetivos descritos anteriormente. Para facilitar a comparação entre métodos, o estado da arte foi dividido em metodologias de processamento de imagem e baseadas em aprendizagem máquina. Optouse no trabalho de investigação desenvolvido pela utilização de metodologias de análise espacial de imagem em detrimento de metodologias baseadas em aprendizagem máquina. Em particular, as metodologias baseadas no espaço de escalas mostraram ser efetivas na obtenção dos objetivos estabelecidos. Para a segmentação de exsudados foram usadas duas abordagens distintas. A primeira abordagem baseiase na curvatura em espaço de escalas em conjunto com a resposta máxima local de um detetor de manchas em espaço de escalas e limiares dinâmicos. A segunda abordagem baseiase na análise do mapa de distribuição de ruído em conjunto com operadores morfológicos e limiares adaptativos. Ambas as abordagens fazem uma segmentação dos exsudados de elevada precisão, além de lidarem eficazmente com a iluminação nãouniforme e a variação de contraste presente nas imagens do fundo do olho. A localização do disco ótico foi conseguida com uma nova técnica designada por campos de soma acumulativos, combinada com métodos de melhoramento da rede vascular. O algoritmo revela ser fiável e eficiente, particularmente em imagens patológicas. A robustez do método foi verificada pela sua avaliação em oito bases de dados. A deteção da linha central dos vasos sanguíneos foi obtida através de um detetor de cantos modificado em conjunto com filtros binários e limiares dinâmicos. A segmentação da rede vascular foi conseguida com um novo método de melhoramento de vasos sanguíneos em espaço de escalas. Os métodos desenvolvidos mostraram ser eficazes na deteção da linha central dos vasos sanguíneos e na segmentação da rede vascular. Finalmente, o método para a deteção de microaneurismas assenta num formalismo de espaço de escalas na deteção e na rotulagem dos microaneurismas. Para a rotulagem foi utilizada uma nova abordagem da vizinhança dos candidatos a microaneurismas. A deteção de microaneurismas permitiu avaliar também a deteção da retinopatia diabética. O método para a deteção de microaneurismas mostrou ser competitivo quando comparado com outros métodos, em particular em imagens de alta resolução. A deteção da retinopatia diabética exibiu um desempenho semelhante a outros métodos e a especialistas humanos. Os trabalhos descritos nesta tese mostram ser possível desenvolver uma abordagem fiável e robusta em espaço de escalas capaz de detetar diferentes estruturas anatómicas e sinais patológicos da retina. Além disso, os resultados obtidos mostram que apesar de a pesquisa mais recente concentrarse em metodologias de aprendizagem máquina, as metodologias de análise espacial apresentam resultados muito competitivos e tipicamente independentes do equipamento de aquisição das imagens. As metodologias desenvolvidas nesta tese podem ser importantes na definição de novos descritores e características, que podem melhorar significativamente o resultado de métodos automatizados
    corecore