14,432 research outputs found

    FReLU: Flexible Rectified Linear Units for Improving Convolutional Neural Networks

    Full text link
    Rectified linear unit (ReLU) is a widely used activation function for deep convolutional neural networks. However, because of the zero-hard rectification, ReLU networks miss the benefits from negative values. In this paper, we propose a novel activation function called \emph{flexible rectified linear unit (FReLU)} to further explore the effects of negative values. By redesigning the rectified point of ReLU as a learnable parameter, FReLU expands the states of the activation output. When the network is successfully trained, FReLU tends to converge to a negative value, which improves the expressiveness and thus the performance. Furthermore, FReLU is designed to be simple and effective without exponential functions to maintain low cost computation. For being able to easily used in various network architectures, FReLU does not rely on strict assumptions by self-adaption. We evaluate FReLU on three standard image classification datasets, including CIFAR-10, CIFAR-100, and ImageNet. Experimental results show that the proposed method achieves fast convergence and higher performances on both plain and residual networks

    CIFAR-10: KNN-based Ensemble of Classifiers

    Full text link
    In this paper, we study the performance of different classifiers on the CIFAR-10 dataset, and build an ensemble of classifiers to reach a better performance. We show that, on CIFAR-10, K-Nearest Neighbors (KNN) and Convolutional Neural Network (CNN), on some classes, are mutually exclusive, thus yield in higher accuracy when combined. We reduce KNN overfitting using Principal Component Analysis (PCA), and ensemble it with a CNN to increase its accuracy. Our approach improves our best CNN model from 93.33% to 94.03%

    Predicting Young's Modulus of Glasses with Sparse Datasets using Machine Learning

    Full text link
    Machine learning (ML) methods are becoming popular tools for the prediction and design of novel materials. In particular, neural network (NN) is a promising ML method, which can be used to identify hidden trends in the data. However, these methods rely on large datasets and often exhibit overfitting when used with sparse dataset. Further, assessing the uncertainty in predictions for a new dataset or an extrapolation of the present dataset is challenging. Herein, using Gaussian process regression (GPR), we predict Young's modulus for silicate glasses having sparse dataset. We show that GPR significantly outperforms NN for sparse dataset, while ensuring no overfitting. Further, thanks to the nonparametric nature, GPR provides quantitative bounds for the reliability of predictions while extrapolating. Overall, GPR presents an advanced ML methodology for accelerating the development of novel functional materials such as glasses.Comment: 17 pages, 5 figure
    • …
    corecore