2,596 research outputs found

    Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique

    Full text link
    [EN] Generalized polynomial chaos (gPC) is a spectral technique in random space to represent random variables and stochastic processes in terms of orthogonal polynomials of the Askey scheme. One of its most fruitful applications consists of solving random differential equations. With gPC, stochastic solutions are expressed as orthogonal polynomials of the input random parameters. Different types of orthogonal polynomials can be chosen to achieve better convergence. This choice is dictated by the key correspondence between the weight function associated to orthogonal polynomials in the Askey scheme and the probability density functions of standard random variables. Otherwise, adaptive gPC constitutes a complementary spectral method to deal with arbitrary random variables in random differential equations. In its original formulation, adaptive gPC requires that both the unknowns and input random parameters enter polynomially in random differential equations. Regarding the inputs, if they appear as non-polynomial mappings of themselves, polynomial approximations are required and, as a consequence, loss of accuracy will be carried out in computations. In this paper an extended version of adaptive gPC is developed to circumvent these limitations of adaptive gPC by taking advantage of the random variable transformation method. A number of illustrative examples show the superiority of the extended adaptive gPC for solving nonlinear random differential equations. In addition, for the sake of completeness, in all examples randomness is tackled by nonlinear expressions.This work has been partially supported by the Ministerio de Economia y Competitividad grants MTM2013-41765-P.Cortés, J.; Romero, J.; Roselló, M.; Villanueva Micó, RJ. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation. 50:1-15. https://doi.org/10.1016/j.cnsns.2017.02.011S1155

    Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models

    Full text link
    [EN] In this paper, we deal with computational uncertainty quantification for stochastic models with one random input parameter. The goal of the paper is twofold: First, to approximate the set of probability density functions of the solution stochastic process, and second, to show the capability of our theoretical findings to deal with some important epidemiological models. The approximations are constructed in terms of a polynomial evaluated at the random input parameter, by means of generalized polynomial chaos expansions and the stochastic Galerkin projection technique. The probability density function of the aforementioned univariate polynomial is computed via the random variable transformation method, by taking into account the domains where the polynomial is strictly monotone. The algebraic/exponential convergence of the Galerkin projections gives rapid convergence of these density functions. The examples are based on fundamental epidemiological models formulated via linear and nonlinear differential and difference equations, where one of the input parameters is assumed to be a random variable.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Chen-Charpentier, BM.; Cortés, J.; Jornet-Sanz, M. (2019). Combining Polynomial Chaos Expansions and the Random Variable Transformation Technique to Approximate the Density Function of Stochastic Problems, Including Some Epidemiological Models. Symmetry (Basel). 11(1):1-28. https://doi.org/10.3390/sym11010043S128111Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Bharucha-Reid, A. T. (1964). On the theory of random equations. Proceedings of Symposia in Applied Mathematics, 40-69. doi:10.1090/psapm/016/0189071Xiu, D., & Karniadakis, G. E. (2002). The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations. SIAM Journal on Scientific Computing, 24(2), 619-644. doi:10.1137/s1064827501387826Chen-Charpentier, B.-M., Cortés, J.-C., Licea, J.-A., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., & Villanueva, R.-J. (2015). Constructing adaptive generalized polynomial chaos method to measure the uncertainty in continuous models: A computational approach. Mathematics and Computers in Simulation, 109, 113-129. doi:10.1016/j.matcom.2014.09.002Cortés, J.-C., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Improving adaptive generalized polynomial chaos method to solve nonlinear random differential equations by the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 50, 1-15. doi:10.1016/j.cnsns.2017.02.011Chen-Charpentier, B. M., & Stanescu, D. (2010). Epidemic models with random coefficients. Mathematical and Computer Modelling, 52(7-8), 1004-1010. doi:10.1016/j.mcm.2010.01.014Lucor, D., Su, C.-H., & Karniadakis, G. E. (2004). Generalized polynomial chaos and random oscillators. International Journal for Numerical Methods in Engineering, 60(3), 571-596. doi:10.1002/nme.976Santonja, F., & Chen-Charpentier, B. (2012). Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos. Computational and Mathematical Methods in Medicine, 2012, 1-8. doi:10.1155/2012/742086Stanescu, D., & Chen-Charpentier, B. M. (2009). Random coefficient differential equation models for bacterial growth. Mathematical and Computer Modelling, 50(5-6), 885-895. doi:10.1016/j.mcm.2009.05.017Calatayud, J., Cortés, J. C., Jornet, M., & Villanueva, R. J. (2018). Computational uncertainty quantification for random time-discrete epidemiological models using adaptive gPC. Mathematical Methods in the Applied Sciences, 41(18), 9618-9627. doi:10.1002/mma.5315Villegas, M., Augustin, F., Gilg, A., Hmaidi, A., & Wever, U. (2012). Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties. Mathematics and Computers in Simulation, 82(5), 805-817. doi:10.1016/j.matcom.2011.12.001Xiu, D., & Em Karniadakis, G. (2002). Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Computer Methods in Applied Mechanics and Engineering, 191(43), 4927-4948. doi:10.1016/s0045-7825(02)00421-8Shi, W., & Zhang, C. (2012). Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Applied Numerical Mathematics, 62(12), 1954-1964. doi:10.1016/j.apnum.2012.08.007Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). On the convergence of adaptive gPC for non-linear random difference equations: Theoretical analysis and some practical recommendations. Journal of Nonlinear Sciences and Applications, 11(09), 1077-1084. doi:10.22436/jnsa.011.09.06Casabán, M.-C., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2015). Probabilistic solution of random SI-type epidemiological models using the Random Variable Transformation technique. Communications in Nonlinear Science and Numerical Simulation, 24(1-3), 86-97. doi:10.1016/j.cnsns.2014.12.016Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Dorini, F. A., & Cunha, M. C. C. (2008). Statistical moments of the random linear transport equation. Journal of Computational Physics, 227(19), 8541-8550. doi:10.1016/j.jcp.2008.06.002Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088Hussein, A., & Selim, M. M. (2015). Solution of the stochastic generalized shallow-water wave equation using RVT technique. The European Physical Journal Plus, 130(12). doi:10.1140/epjp/i2015-15249-3Hussein, A., & Selim, M. M. (2013). A general analytical solution for the stochastic Milne problem using Karhunen–Loeve (K–L) expansion. Journal of Quantitative Spectroscopy and Radiative Transfer, 125, 84-92. doi:10.1016/j.jqsrt.2013.03.018Xu, Z., Tipireddy, R., & Lin, G. (2016). Analytical approximation and numerical studies of one-dimensional elliptic equation with random coefficients. Applied Mathematical Modelling, 40(9-10), 5542-5559. doi:10.1016/j.apm.2015.12.041Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.015El-Tawil, M. A. (2005). The approximate solutions of some stochastic differential equations using transformations. Applied Mathematics and Computation, 164(1), 167-178. doi:10.1016/j.amc.2004.04.062Calatayud, J., Cortés, J.-C., & Jornet, M. (2018). The damped pendulum random differential equation: A comprehensive stochastic analysis via the computation of the probability density function. Physica A: Statistical Mechanics and its Applications, 512, 261-279. doi:10.1016/j.physa.2018.08.024Calatayud, J., Cortés, J. C., & Jornet, M. (2018). Uncertainty quantification for random parabolic equations with nonhomogeneous boundary conditions on a bounded domain via the approximation of the probability density function. Mathematical Methods in the Applied Sciences, 42(17), 5649-5667. doi:10.1002/mma.5333Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Solving second-order linear differential equations with random analytic coefficients about ordinary points: A full probabilistic solution by the first probability density function. Applied Mathematics and Computation, 331, 33-45. doi:10.1016/j.amc.2018.02.051Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2016). A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Communications in Nonlinear Science and Numerical Simulation, 32, 199-210. doi:10.1016/j.cnsns.2015.08.009Kegan, B., & West, R. W. (2005). Modeling the simple epidemic with deterministic differential equations and random initial conditions. Mathematical Biosciences, 194(2), 217-231. doi:10.1016/j.mbs.2005.02.002Crestaux, T., Le Maıˆtre, O., & Martinez, J.-M. (2009). Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety, 94(7), 1161-1172. doi:10.1016/j.ress.2008.10.008Sudret, B. (2008). Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering & System Safety, 93(7), 964-979. doi:10.1016/j.ress.2007.04.002Chen-Charpentier, B. M., Cortés, J.-C., Romero, J.-V., & Roselló, M.-D. (2013). Some recommendations for applying gPC (generalized polynomial chaos) to modeling: An analysis through the Airy random differential equation. Applied Mathematics and Computation, 219(9), 4208-4218. doi:10.1016/j.amc.2012.11.007Ernst, O. G., Mugler, A., Starkloff, H.-J., & Ullmann, E. (2011). On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(2), 317-339. doi:10.1051/m2an/2011045Giraud, L., Langou, J., & Rozloznik, M. (2005). The loss of orthogonality in the Gram-Schmidt orthogonalization process. Computers & Mathematics with Applications, 50(7), 1069-1075. doi:10.1016/j.camwa.2005.08.009Marzouk, Y. M., Najm, H. N., & Rahn, L. A. (2007). Stochastic spectral methods for efficient Bayesian solution of inverse problems. Journal of Computational Physics, 224(2), 560-586. doi:10.1016/j.jcp.2006.10.010Marzouk, Y., & Xiu, D. (2009). A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems. Communications in Computational Physics, 6(4), 826-847. doi:10.4208/cicp.2009.v6.p826SCOTT, D. W. (1979). On optimal and data-based histograms. Biometrika, 66(3), 605-610. doi:10.1093/biomet/66.3.605National Spanish Health Survey (Encuesta Nacional de Salud de España, ENSE)http://pestadistico.inteligenciadegestion.msssi.es/publicoSNS/comun/ArbolNodos.asp

    Some notes to extend the study on random non-autonomous second order linear differential equations appearing in Mathematical Modeling

    Get PDF
    The objective of this paper is to complete certain issues from our recent contribution [J. Calatayud, J.-C. Cort\'es, M. Jornet, L. Villafuerte, Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties, Advances in Difference Equations, 2018:392, 1--29 (2018)]. We restate the main theorem therein that deals with the homogeneous case, so that the hypotheses are clearer and also easier to check in applications. Another novelty is that we tackle the non-homogeneous equation with a theorem of existence of mean square analytic solution and a numerical example. We also prove the uniqueness of mean square solution via an habitual Lipschitz condition that extends the classical Picard Theorem to mean square calculus. In this manner, the study on general random non-autonomous second order linear differential equations with analytic data processes is completely resolved. Finally, we relate our exposition based on random power series with polynomial chaos expansions and the random differential transform method, being the latter a reformulation of our random Fr\"obenius method.Comment: 15 pages, 0 figures, 2 table

    Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique

    Full text link
    [EN] Discrete stochastic systems model discrete response data on some phenomenon with inherent uncertainty. The main goal of uncertainty quantification is to derive the probabilistic features of the stochastic system. This paper deals with theoretical and computational aspects of uncertainty quantification for nonlinear difference equations with dependent random inputs. When the random inputs are independent random variables, a generalized Polynomial Chaos (gPC) approach has been usually used to computationally quantify the uncertainty of stochastic systems. In the gPC technique, the stochastic Galerkin projections are done onto linear spans of orthogonal polynomials from the Askey-Wiener scheme or from Gram-Schmidt orthonormalization procedures. In this regard, recent results have established the algebraic or exponential convergence of these Galerkin projections to the solution process. In this paper, as the random inputs of the difference equation may be dependent, we perform Galerkin projections directly onto linear spans of canonical polynomials. The main contribution of this paper is to study the spectral convergence of these Galerkin projections for the solution process of general random difference equations. Spectral convergence is important to derive the main statistics of the response process at a cheap computational expense. In this regard, the numerical experiments bring to light the theoretical discussion of the paper.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. The co-author Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M. (2019). Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique. Communications in Nonlinear Science and Numerical Simulation. 72:108-120. https://doi.org/10.1016/j.cnsns.2018.12.011S1081207

    Meta-models for structural reliability and uncertainty quantification

    Get PDF
    A meta-model (or a surrogate model) is the modern name for what was traditionally called a response surface. It is intended to mimic the behaviour of a computational model M (e.g. a finite element model in mechanics) while being inexpensive to evaluate, in contrast to the original model which may take hours or even days of computer processing time. In this paper various types of meta-models that have been used in the last decade in the context of structural reliability are reviewed. More specifically classical polynomial response surfaces, polynomial chaos expansions and kriging are addressed. It is shown how the need for error estimates and adaptivity in their construction has brought this type of approaches to a high level of efficiency. A new technique that solves the problem of the potential biasedness in the estimation of a probability of failure through the use of meta-models is finally presented.Comment: Keynote lecture Fifth Asian-Pacific Symposium on Structural Reliability and its Applications (5th APSSRA) May 2012, Singapor
    • …
    corecore