57,376 research outputs found

    Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation

    Full text link
    Appearance changes due to weather and seasonal conditions represent a strong impediment to the robust implementation of machine learning systems in outdoor robotics. While supervised learning optimises a model for the training domain, it will deliver degraded performance in application domains that underlie distributional shifts caused by these changes. Traditionally, this problem has been addressed via the collection of labelled data in multiple domains or by imposing priors on the type of shift between both domains. We frame the problem in the context of unsupervised domain adaptation and develop a framework for applying adversarial techniques to adapt popular, state-of-the-art network architectures with the additional objective to align features across domains. Moreover, as adversarial training is notoriously unstable, we first perform an extensive ablation study, adapting many techniques known to stabilise generative adversarial networks, and evaluate on a surrogate classification task with the same appearance change. The distilled insights are applied to the problem of free-space segmentation for motion planning in autonomous driving.Comment: In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017

    Robust Stereo Visual Odometry through a Probabilistic Combination of Points and Line Segments

    Get PDF
    Most approaches to stereo visual odometry reconstruct the motion based on the tracking of point features along a sequence of images. However, in low-textured scenes it is often difficult to encounter a large set of point features, or it may happen that they are not well distributed over the image, so that the behavior of these algorithms deteriorates. This paper proposes a probabilistic approach to stereo visual odometry based on the combination of both point and line segment that works robustly in a wide variety of scenarios. The camera motion is recovered through non-linear minimization of the projection errors of both point and line segment features. In order to effectively combine both types of features, their associated errors are weighted according to their covariance matrices, computed from the propagation of Gaussian distribution errors in the sensor measurements. The method, of course, is computationally more expensive that using only one type of feature, but still can run in real-time on a standard computer and provides interesting advantages, including a straightforward integration into any probabilistic framework commonly employed in mobile robotics.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Project "PROMOVE: Advances in mobile robotics for promoting independent life of elders", funded by the Spanish Government and the "European Regional Development Fund ERDF" under contract DPI2014-55826-R

    Place Categorization and Semantic Mapping on a Mobile Robot

    Full text link
    In this paper we focus on the challenging problem of place categorization and semantic mapping on a robot without environment-specific training. Motivated by their ongoing success in various visual recognition tasks, we build our system upon a state-of-the-art convolutional network. We overcome its closed-set limitations by complementing the network with a series of one-vs-all classifiers that can learn to recognize new semantic classes online. Prior domain knowledge is incorporated by embedding the classification system into a Bayesian filter framework that also ensures temporal coherence. We evaluate the classification accuracy of the system on a robot that maps a variety of places on our campus in real-time. We show how semantic information can boost robotic object detection performance and how the semantic map can be used to modulate the robot's behaviour during navigation tasks. The system is made available to the community as a ROS module
    • …
    corecore