13 research outputs found

    Energy efficiency of error correction on wireless systems

    Get PDF
    Since high error rates are inevitable to the wireless environment, energy-efficient error-control is an important issue for mobile computing systems. We have studied the energy efficiency of two different error correction mechanisms and have measured the efficiency of an implementation in software. We show that it is not sufficient to concentrate on the energy efficiency of error control mechanisms only, but the required extra energy consumed by the wireless interface should be incorporated as well. A model is presented that can be used to determine an energy-efficient error correction scheme of a minimal system consisting of a general purpose processor and a wireless interface. As an example we have determined these error correction parameters on two systems with a WaveLAN interfac

    Energy-efficient adaptive wireless network design

    Get PDF
    Energy efficiency is an important issue for mobile computers since they must rely on their batteries. We present an energy-efficient highly adaptive architecture of a network interface and novel data link layer protocol for wireless networks that provides quality of service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations are necessary to achieve energy efficiency and an acceptable quality of service. The paper provides a review of ideas and techniques relevant to the design of an energy efficient adaptive wireless networ

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    MAC-layer approaches for security and performance enhancement in IEEE 802.11

    Get PDF
    Over the past few years, wireless networks are becoming increasingly popular. The dominant question facing the wireless network today is: how can the network meet the needs of various users and applications? Two basic and primary needs for users are efficiency and security. To deal with these two concerns, this dissertation investigates the two areas and proposes four MAC-level approaches for security and performance enhancement in IEEE 802.11.;In the first part, we propose three MAC-level approaches to improve the throughput performance in wireless LANs, i.e., the Freeze Counter scheme (FC), the Dynamically Adaptive Retransmission (DAR), and the Quick Acknowledgement (QA) scheme. The Freeze Counter scheme is an adaptive error recovery mechanism in 802.11, which can perform different actions according to the reasons for frame losses. Dynamically Adaptive Retransmission scheme is an enhanced feedback scheme in 802.11. We propose a Quick Acknowledgement (QA) scheme as a replacement for positive acknowledgement in IEEE 802.11. By using similar concepts as selective ACK and negative ACK, the proposed protocol solves the inefficiency problem of positive ACK in 802.11.;In the second part, we propose a lightweight statistical authentication protocol for wireless networks. With more and more applications on wireless networks, new concerns are raised when it comes to security issues. Authentication service particularly becomes one of the basic but necessary security measures for wireless applications. However, traditional authentication protocols for wired networks do not work well in a wireless environment due to unique characteristics. To meet this target, we propose a lightweight statistical authentication protocol for wireless networks, namely Shepherd. To solve the inherent out-of-sync problem with Shepherd protocol, we develop three synchronization schemes with their statistical methods. In Shepherd, the legitimacy of a mobile node is determined by continuously checking a series of random authentication bits where each bit in this stream is piggybacked by a packet. Such an authentication bit stream is generated by both mobile node and access point using the same random number generator under the same shared seed as a key. The complete evaluation and analysis of all proposed approaches have been discussed

    Gerência da largura de banda para garantir QoS adaptável em redes sem fio ad hoc

    Get PDF
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico.As redes sem fio apresentam um novo paradigma computacional que tem como função principal prover aos usuários o acesso permanente à rede independente de sua localização física. Com a diminuição dos custos dos dispositivos portáteis e o aumento da sua capacidade surgiu um novo conceito chamado redes ad hoc, onde a comunicação é feita diretamente entre os computadores móveis. Neste trabalho são descritas as características fundamentais das redes ad hoc. Assim como as principais tendências para garantir a qualidade de serviço nas redes sem fio, considerando as características: transmissão pouco confiável, largura de banda limitada e alta taxa de erros. No trabalho é proposto um mecanismo para manter QoS adaptável sobre o princípio de gerência da largura de banda em redes sem fio de topologia ad hoc. Também foi desenvolvido um software que permite simular ambientes de redes ad hoc, fazendo as conexões em conformidade com o critério do mecanismo proposto. Para a validação realizaram-se várias experiências que permitiram provar as vantagens do mecanismo. Naquelas redes onde o mecanismo de QoS adaptável foi usado, obteve-se melhor aproveitamento do canal de transmissão, ao mesmo tempo que maior quantidade de conexões eram aceitas

    Improving Wireless LAN Performance via Adaptive Local Error Control

    No full text
    Wireless links can exhibit high error rates due to attenuation, fading, or interfering active radiation sources. To make matters worse, error rates can be highly variable due to changes in the wireless environment. Researchers and developers have explored a wide range of solutions to optimize communication in this difficult error environment, including traditional end-to-end solutions, link-layer solutions, and solutions involving layer four processing inside the network. A significant challenge is ensuring that systems with multiple layers of error control avoid compromising performance by duplication of effort. We argu

    Improving Wireless LAN Performance via Adaptive Local Error Control

    No full text
    Wireless links can exhibit high error rates due to attenuation, fading, or interfering active radiation sources. To make matters worse, error rates can be highly variable due to changes in the wireless environment. Researchers and developers have explored a wide range of solutions to optimize communication in this difficult error environment, including traditional end-to-end solutions, link-layer solutions, and solutions involving layer four processing inside the network. A significant challenge is ensuring that systems with multiple layers of error control avoid compromising performance by duplication of effort. We argue and demonstrate that protocol-independent link-level local error control can achieve high communication efficiency even in a highly variable error environment, that adaptation is important to achieve this efficiency, and that inter-layer coexistence is achievable. The logical link control layer of our WaveLAN-based experimental LAN includes three error control mechanisms: local retransmission, adaptive packet shrinking, and adaptive error coding. Measurements generated on a variety of network topologies and trace-based error environments demonstrate the TCP performance improvements and good coexistence with TCP's end-to-end retransmission strateg
    corecore