1,305 research outputs found

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    LoGAN: Generating Logos with a Generative Adversarial Neural Network Conditioned on color

    Get PDF
    Designing a logo is a long, complicated, and expensive process for any designer. However, recent advancements in generative algorithms provide models that could offer a possible solution. Logos are multi-modal, have very few categorical properties, and do not have a continuous latent space. Yet, conditional generative adversarial networks can be used to generate logos that could help designers in their creative process. We propose LoGAN: an improved auxiliary classifier Wasserstein generative adversarial neural network (with gradient penalty) that is able to generate logos conditioned on twelve different colors. In 768 generated instances (12 classes and 64 logos per class), when looking at the most prominent color, the conditional generation part of the model has an overall precision and recall of 0.8 and 0.7 respectively. LoGAN's results offer a first glance at how artificial intelligence can be used to assist designers in their creative process and open promising future directions, such as including more descriptive labels which will provide a more exhaustive and easy-to-use system.Comment: 6 page, ICMLA1

    SGAN: An Alternative Training of Generative Adversarial Networks

    Full text link
    The Generative Adversarial Networks (GANs) have demonstrated impressive performance for data synthesis, and are now used in a wide range of computer vision tasks. In spite of this success, they gained a reputation for being difficult to train, what results in a time-consuming and human-involved development process to use them. We consider an alternative training process, named SGAN, in which several adversarial "local" pairs of networks are trained independently so that a "global" supervising pair of networks can be trained against them. The goal is to train the global pair with the corresponding ensemble opponent for improved performances in terms of mode coverage. This approach aims at increasing the chances that learning will not stop for the global pair, preventing both to be trapped in an unsatisfactory local minimum, or to face oscillations often observed in practice. To guarantee the latter, the global pair never affects the local ones. The rules of SGAN training are thus as follows: the global generator and discriminator are trained using the local discriminators and generators, respectively, whereas the local networks are trained with their fixed local opponent. Experimental results on both toy and real-world problems demonstrate that this approach outperforms standard training in terms of better mitigating mode collapse, stability while converging and that it surprisingly, increases the convergence speed as well

    Super-Resolution of License Plate Images Using Attention Modules and Sub-Pixel Convolution Layers

    Full text link
    Recent years have seen significant developments in the field of License Plate Recognition (LPR) through the integration of deep learning techniques and the increasing availability of training data. Nevertheless, reconstructing license plates (LPs) from low-resolution (LR) surveillance footage remains challenging. To address this issue, we introduce a Single-Image Super-Resolution (SISR) approach that integrates attention and transformer modules to enhance the detection of structural and textural features in LR images. Our approach incorporates sub-pixel convolution layers (also known as PixelShuffle) and a loss function that uses an Optical Character Recognition (OCR) model for feature extraction. We trained the proposed architecture on synthetic images created by applying heavy Gaussian noise to high-resolution LP images from two public datasets, followed by bicubic downsampling. As a result, the generated images have a Structural Similarity Index Measure (SSIM) of less than 0.10. Our results show that our approach for reconstructing these low-resolution synthesized images outperforms existing ones in both quantitative and qualitative measures. Our code is publicly available at https://github.com/valfride/lpr-rsr-ext
    • …
    corecore