54 research outputs found

    Visual Speech Enhancement

    Full text link
    When video is shot in noisy environment, the voice of a speaker seen in the video can be enhanced using the visible mouth movements, reducing background noise. While most existing methods use audio-only inputs, improved performance is obtained with our visual speech enhancement, based on an audio-visual neural network. We include in the training data videos to which we added the voice of the target speaker as background noise. Since the audio input is not sufficient to separate the voice of a speaker from his own voice, the trained model better exploits the visual input and generalizes well to different noise types. The proposed model outperforms prior audio visual methods on two public lipreading datasets. It is also the first to be demonstrated on a dataset not designed for lipreading, such as the weekly addresses of Barack Obama.Comment: Accepted to Interspeech 2018. Supplementary video: https://www.youtube.com/watch?v=nyYarDGpcY

    Deep audio-visual speech recognition

    Get PDF
    Decades of research in acoustic speech recognition have led to systems that we use in our everyday life. However, even the most advanced speech recognition systems fail in the presence of noise. The degraded performance can be compensated by introducing visual speech information. However, Visual Speech Recognition (VSR) in naturalistic conditions is very challenging, in part due to the lack of architectures and annotations. This thesis contributes towards the problem of Audio-Visual Speech Recognition (AVSR) from different aspects. Firstly, we develop AVSR models for isolated words. In contrast to previous state-of-the-art methods that consists of a two-step approach, feature extraction and recognition, we present an End-to-End (E2E) approach inside a deep neural network, and this has led to a significant improvement in audio-only, visual-only and audio-visual experiments. We further replace Bi-directional Gated Recurrent Unit (BGRU) with Temporal Convolutional Networks (TCN) to greatly simplify the training procedure. Secondly, we extend our AVSR model for continuous speech by presenting a hybrid Connectionist Temporal Classification (CTC)/Attention model, that can be trained in an end-to-end manner. We then propose the addition of prediction-based auxiliary tasks to a VSR model and highlight the importance of hyper-parameter optimisation and appropriate data augmentations. Next, we present a self-supervised framework, Learning visual speech Representations from Audio via self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features from unlabelled visual speech, and find that this pre-trained model can be leveraged towards word-level and sentence-level lip-reading. We also investigate the Lombard effect influence in an end-to-end AVSR system, which is the first work using end-to-end deep architectures and presents results on unseen speakers. We show that even if a relatively small amount of Lombard speech is added to the training set then the performance in a real scenario, where noisy Lombard speech is present, can be significantly improved. Lastly, we propose a detection method against adversarial examples in an AVSR system, where the strong correlation between audio and visual streams is leveraged. The synchronisation confidence score is leveraged as a proxy for audio-visual correlation and based on it, we can detect adversarial attacks. We apply recent adversarial attacks on two AVSR models and the experimental results demonstrate that the proposed approach is an effective way for detecting such attacks.Open Acces

    Zero-shot keyword spotting for visual speech recognition in-the-wild

    Full text link
    Visual keyword spotting (KWS) is the problem of estimating whether a text query occurs in a given recording using only video information. This paper focuses on visual KWS for words unseen during training, a real-world, practical setting which so far has received no attention by the community. To this end, we devise an end-to-end architecture comprising (a) a state-of-the-art visual feature extractor based on spatiotemporal Residual Networks, (b) a grapheme-to-phoneme model based on sequence-to-sequence neural networks, and (c) a stack of recurrent neural networks which learn how to correlate visual features with the keyword representation. Different to prior works on KWS, which try to learn word representations merely from sequences of graphemes (i.e. letters), we propose the use of a grapheme-to-phoneme encoder-decoder model which learns how to map words to their pronunciation. We demonstrate that our system obtains very promising visual-only KWS results on the challenging LRS2 database, for keywords unseen during training. We also show that our system outperforms a baseline which addresses KWS via automatic speech recognition (ASR), while it drastically improves over other recently proposed ASR-free KWS methods.Comment: Accepted at ECCV-201

    Generation of realistic human behaviour

    Get PDF
    As the use of computers and robots in our everyday lives increases so does the need for better interaction with these devices. Human-computer interaction relies on the ability to understand and generate human behavioural signals such as speech, facial expressions and motion. This thesis deals with the synthesis and evaluation of such signals, focusing not only on their intelligibility but also on their realism. Since these signals are often correlated, it is common for methods to drive the generation of one signal using another. The thesis begins by tackling the problem of speech-driven facial animation and proposing models capable of producing realistic animations from a single image and an audio clip. The goal of these models is to produce a video of a target person, whose lips move in accordance with the driving audio. Particular focus is also placed on a) generating spontaneous expression such as blinks, b) achieving audio-visual synchrony and c) transferring or producing natural head motion. The second problem addressed in this thesis is that of video-driven speech reconstruction, which aims at converting a silent video into waveforms containing speech. The method proposed for solving this problem is capable of generating intelligible and accurate speech for both seen and unseen speakers. The spoken content is correctly captured thanks to a perceptual loss, which uses features from pre-trained speech-driven animation models. The ability of the video-to-speech model to run in real-time allows its use in hearing assistive devices and telecommunications. The final work proposed in this thesis is a generic domain translation system, that can be used for any translation problem including those mapping across different modalities. The framework is made up of two networks performing translations in opposite directions and can be successfully applied to solve diverse sets of translation problems, including speech-driven animation and video-driven speech reconstruction.Open Acces

    Improving the Gap in Visual Speech Recognition Between Normal and Silent Speech Based on Metric Learning

    Full text link
    This paper presents a novel metric learning approach to address the performance gap between normal and silent speech in visual speech recognition (VSR). The difference in lip movements between the two poses a challenge for existing VSR models, which exhibit degraded accuracy when applied to silent speech. To solve this issue and tackle the scarcity of training data for silent speech, we propose to leverage the shared literal content between normal and silent speech and present a metric learning approach based on visemes. Specifically, we aim to map the input of two speech types close to each other in a latent space if they have similar viseme representations. By minimizing the Kullback-Leibler divergence of the predicted viseme probability distributions between and within the two speech types, our model effectively learns and predicts viseme identities. Our evaluation demonstrates that our method improves the accuracy of silent VSR, even when limited training data is available.Comment: Accepted by INTERSPEECH 202

    Prompt Tuning of Deep Neural Networks for Speaker-adaptive Visual Speech Recognition

    Full text link
    Visual Speech Recognition (VSR) aims to infer speech into text depending on lip movements alone. As it focuses on visual information to model the speech, its performance is inherently sensitive to personal lip appearances and movements, and this makes the VSR models show degraded performance when they are applied to unseen speakers. In this paper, to remedy the performance degradation of the VSR model on unseen speakers, we propose prompt tuning methods of Deep Neural Networks (DNNs) for speaker-adaptive VSR. Specifically, motivated by recent advances in Natural Language Processing (NLP), we finetune prompts on adaptation data of target speakers instead of modifying the pre-trained model parameters. Different from the previous prompt tuning methods mainly limited to Transformer variant architecture, we explore different types of prompts, the addition, the padding, and the concatenation form prompts that can be applied to the VSR model which is composed of CNN and Transformer in general. With the proposed prompt tuning, we show that the performance of the pre-trained VSR model on unseen speakers can be largely improved by using a small amount of adaptation data (e.g., less than 5 minutes), even if the pre-trained model is already developed with large speaker variations. Moreover, by analyzing the performance and parameters of different types of prompts, we investigate when the prompt tuning is preferred over the finetuning methods. The effectiveness of the proposed method is evaluated on both word- and sentence-level VSR databases, LRW-ID and GRID
    corecore