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Abstract

Decades of research in acoustic speech recognition have led to systems that we use in our everyday life.

However, even the most advanced speech recognition systems fail in the presence of noise. The degraded

performance can be compensated by introducing visual speech information. However, Visual Speech

Recognition (VSR) in naturalistic conditions is very challenging, in part due to the lack of architectures

and annotations.

This thesis contributes towards the problem of Audio-Visual Speech Recognition (AVSR) from different

aspects. Firstly, we develop AVSR models for isolated words. In contrast to previous state-of-the-art

methods that consists of a two-step approach, feature extraction and recognition, we present an End-to-End

(E2E) approach inside a deep neural network, and this has led to a significant improvement in audio-only,

visual-only and audio-visual experiments. We further replace Bi-directional Gated Recurrent Unit (BGRU)

with Temporal Convolutional Networks (TCN) to greatly simplify the training procedure.

Secondly, we extend our AVSR model for continuous speech by presenting a hybrid Connectionist

Temporal Classification (CTC)/Attention model, that can be trained in an end-to-end manner. We then

propose the addition of prediction-based auxiliary tasks to a VSR model and highlight the importance of

hyper-parameter optimisation and appropriate data augmentations.

Next, we present a self-supervised framework, Learning visual speech Representations from Audio via

self-supervision (LiRA). Specifically, we train a ResNet+Conformer model to predict acoustic features

from unlabelled visual speech, and find that this pre-trained model can be leveraged towards word-level

and sentence-level lip-reading.

We also investigate the Lombard effect influence in an end-to-end AVSR system, which is the first work

using end-to-end deep architectures and presents results on unseen speakers. We show that even if a

relatively small amount of Lombard speech is added to the training set then the performance in a real

scenario, where noisy Lombard speech is present, can be significantly improved.

Lastly, we propose a detection method against adversarial examples in an AVSR system, where the strong

correlation between audio and visual streams is leveraged. The synchronisation confidence score is

leveraged as a proxy for audio-visual correlation and based on it, we can detect adversarial attacks. We

apply recent adversarial attacks on two AVSR models and the experimental results demonstrate that the

proposed approach is an effective way for detecting such attacks.
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1.1 Motivation

AVSR is the task of transcribing text from audio and visual streams, which has recently attracted a lot

of research attention due to its robustness against noise. Since the visual stream is not affected by the

presence of noise, an audio-visual model can lead to improved performance over an audio-only model as

the level of noise increases.

Traditional audiovisual fusion systems consist of two stages, feature extraction from the image and audio

signals and combination of the features for joint classification [5, 6, 7]. Recently, several deep learning

approaches for audiovisual fusion have been presented, which aim to replace the feature extraction stage

with deep bottleneck architectures. Usually a transform, like Principal Component Analysis (PCA), is first

applied to the mouth Region Of Interest (ROI) and spectrograms or concatenated Mel-Frequency Cepstral

Coefficients (MFCCs) and a deep autoencoder is trained to extract bottleneck features [8, 9, 10, 11, 12, 13].

Then these features are fed to a classifier such as a support vector machine or a Hidden Markov Model.

In the early days, studies on AVSR are mostly based on heavily engineered approaches rather than learning.

19
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In contrast to traditional approaches, deep-learning based approaches are advantageous to learn powerful

representations, and their performance usually outperforms that of log-Mel filter-bank features.

However, few works have been presented very recently which follow an end-to-end approach for visual

speech recognition. The main approaches followed can be divided into two groups. In the first one,

fully connected layers are used to extract features and LSTM layers model the temporal dynamics of the

sequence [14, 15]. In the second group, a 3D convolutional layer is used followed either by standard

convolutional layers [16] or residual networks (ResNet) [17] combined with LSTMs or GRUs. End-to-

end approaches have also been successfully used for speech emotion recognition using 1D CNNs and

LSTMs [18].

To the best of our knowledge, work on end-to-end audiovisual speech recognition has been very limited.

There are only two works which perform end-to-end training for audiovisual speech recognition [19, 14].

In the former, an attention mechanism is applied to both the mouth ROIs and MFCCs and the model

is trained end-to-end. However, the system does not use the raw audio signal or spectrogram but relies

on MFCC features. In the latter, fully connected layers together with LSTMs are used in order to

extract features directly from raw images and spectrograms and perform classification on the OuluVS

database [20].

Furthermore, another limitation of current models barring their use in practical applications is their

computational cost. Many speech recognition applications rely on on-device computing, where the

computational capacity is limited, and memory footprint and battery consumption play a crucial role in

the deployment. As a consequence, a few works have also focused on the computational complexity of

visual speech recognition [21, 22], but such models still trail massively behind full-fledged ones in terms

of accuracy.

More importantly, the gap between the model augmented by artificial noise injection and background

noise is not neglected. Normally, AVSR models have been presented [2, 19, 23, 24] by augmenting the

performance of ASR models. The main application of such systems is in noisy acoustic environments

since the main assumption is that the visual signal is not affected by noise and can therefore enhance the

performance of speech recognition systems. However, this assumption is not true due to the Lombard

effect. This mismatch have affected the performance of ASR, VSR and AVSR models in real scenarios.
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This thesis studies AVSR in naturalistic conditions. Different challenges of AVSR are investigated and

addressed by the proposal of various end-to-end deep models that lead to new state-of-the-arts in this

field. Word-level AVSR, a task that aims to recognise isolated words from both audio waveforms and the

sequence of images, is the first topic discussed in this thesis. An end-to-end trainable AVSR model, which

takes as input raw audio waveforms and mouth ROIs, and predicts the characters of the spoken utterance

is presented along with several temporal model variants. Subsequently, we present a novel E2E VSR

model with auxiliary tasks for continuous speech. Different from previous works that were only conducted

on English-based datasets, the proposed approach is evaluated not only in English but also in Mandarin

and Spanish, which are the two most widely-spoken non-English languages. Additionally, we propose

a framework which learns visual speech recognition from audio through self-supervision (LiRA), and

we also present how the cues of audio-visual correlation can be leveraged to detect adversarial examples.

Last but not least, we investigate the impact of Lombard effect in a system for AVSR.

1.2 Contributions

1.2.1 Speech Recognition for Isolated Words

The first contribution of this thesis is the study of AVSR for isolated words. Most previous works [25, 26,

27, 28, 29, 14] focus only on a simplistic setting, namely that of predicting several digits or short phrases

in a controlled, laboratory condition, while very few works [17, 19, 30] recognise isolated words in the

wild.

We solve the AVSR problem by introducing novel neural networks and data augmentation techniques.

In the former case, we propose CNN-based networks including MS-TCN and DC-TCN that effectively

improve the performance on the largest publicly available audio-visual speech datasets. In the latter case,

we introduce the variable length augmentation technique to enhance the robustness towards frame removal.

In addition, we apply simple and effective augmentation techniques such as time masking to achieve a

high level of accuracy on the datasets.

Our results demonstrate that: 1) Compared with BGRUs-based models that require multiple stage training

strategies [31], our methods reduce the training time from 3 weeks to 1 week. 2) We achieve a new

state-of-the-art performance on the LRW dataset by combining all the latest data augmentation methods,
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using the recently proposed DC-TCN, word boundary indicators and self-distillation. We achieve an

accuracy of 92.8% for a single model and 93.4% for an ensemble. The performance can be slightly

improved to 93% and 93.6%, respectively, by pre-training in a self-supervised manner on the LRS3

dataset. 3) Time masking is the most effective augmentation method followed by mixup. The use of

DC-TCN significantly outperforms the MS-TCN which in turn outperforms the BGRU model. 4) The

error analysis suggest that all these methods improve the performance by significantly increasing the

classification accuracy of difficult words.

1.2.2 Speech Recognition for Continuous Speech

We further study the task of AVSR for continuous speech. Recent advances in deep learning and the

availability of large audio-visual datasets have led to the development of much more accurate and robust

speech recognition models than ever before [19, 32, 33, 34]. However, this constant improvement usually

relies on creating larger training sets and less emphasis is put on the model design.

In Chapter 4, we extend our previous AVSR model [24] to an end-to-end model, which extracts features

directly from image sequences and audio waveforms, and implement several changes that significantly

improve the performance. Specifically, the changes include initialisation methods, language models

and network architectures. Furthermore, we perform a comparison between audio-only models trained

with log-Mel filter-bank features and raw waveforms. Although in clean conditions they both perform

similarly, the raw audio model performs better in noisy conditions. A similar observation is made when

comparing between audio-visual and audio-only models. Furthermore, we demonstrate that focusing

on designing better models is equally important to using larger training sets. We propose the addition

of prediction-based auxiliary tasks to a VSR model and highlight the importance of hyper-parameter

optimisation and appropriate data augmentations. We test our approach on several challenging datasets

in multiple languages and show that it outperforms all previous methods trained on publicly available

datasets by a large margin. It even outperforms existing works trained on non-publicly available datasets

which contain up to 20 times more data. We also show that using additional training data, even in other

languages or with automatically generated transcriptions, results in further improvement which is in line

with the recent trend in the literature.
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1.2.3 Learning Visual Speech Representations from Audio through Self-Supervision

In Chapter 5, we leverage the vast amount of available audio-visual speech data to learn generic visual

speech features and improve state-of-the-art lip-reading models by predicting audio features from visual

speech. Previous work on self-supervised learning has has received substantial attention in recent

years within the computer vision community. However, comparatively little attention has been given to

leveraging one modality as a training objective to learn from the other.

In this chapter, we propose to learn visual speech representations from audio modalities. We demonstrate

that LiRA provides a good initialisation for fine-tuning lip-reading models which consistently outperforms

training from scratch, and that this method is particularly beneficial for smaller labelled datasets. We

show that LiRA outperforms previous self-supervised methods for word-level lip-reading, achieving an

accuracy of 88.1% on LRW by pre-training on unlabelled data. Finally, we leverage our approach towards

sentence-level lip-reading, and find that our fine-tuned model achieves state-of-the-art performance on

LRS2.

1.2.4 Investigating the Lombard Effect Influence on Audio-Visual Speech Recognition

The third contribution of this thesis is to study the Lombard effect in AVSR models. The Lombard

effect [35] is the involuntary tendency of speakers to make speech more intelligible and affects both

the acoustic characteristics of speech and lip movements in a noisy environment. It is acoustically

characterised by an increase in the sound intensity, fundamental frequency, vowel duration and a shift in

the formant frequencies [36, 37, 38, 39]. Visually, it is characterised by hyper-articulation [40, 41] and

more pronounced rigid-head motion [39, 42]. Several AVSR models have been recently proposed which

aim to improve the robustness over audio-only models in the presence of noise. However, almost all of

them ignore the impact of the Lombard effect, i.e., the change in speaking style in noisy environments

which aims to make speech more intelligible and affects both the acoustic characteristics of speech and

the lip movements.

In Chapter 6, we investigate the Lombard effect influence on E2E audio-visual speech recognition. To

the best of our knowledge, this is the first work which does so using end-to-end deep architectures and

presents results on unseen speakers. Our results show that properly modelling Lombard speech is always
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beneficial. Even if a relatively small amount of Lombard speech is added to the training set then the

performance in a real scenario, i.e, noisy Lombard speech, can be significantly improved. We also show

that standard approach followed in the literature, where a model is trained and tested on noisy plain

speech, provides a correct estimate of the video-only performance but overestimates the performance

of audio-only models in a multi-speaker scenario. In a subject-independent scenario the performance is

overestimated for SNRs higher than -3dB and underestimated for lower SNRs.

1.2.5 Detecting Adversarial Attacks on Audio-Visual Speech Recognition

The last contribution of this thesis is to detect adversarial examples in an audio-visual model by leveraging

the correlation between audio and visual streams. Existing studies have mainly focused on crafting

adversarial examples. [43, 44, 45, 46]. However, work on how to detect adversarial attacks is very limited.

To the best of our knowledge, the only work in the audio domain was proposed by Yang et al. [47] and

exploits the inherent temporal dependency in audio samples to detect adversarial examples.

In this work, we propose an efficient and straightforward detection method based on the temporal

correlation between audio and video streams. The main idea is that the correlation between audio and

video in adversarial examples will be lower than benign examples due to added adversarial noise. We use

the synchronisation confidence score as a proxy for audio-visual correlation and based on it we can detect

adversarial attacks. To the best of our knowledge, this is the first work on detection of adversarial attacks

on AVSR models. We apply recent adversarial attacks on two AVSR models trained on the GRID and

LRW datasets. The experimental results demonstrate that the proposed approach is an effective way for

detecting such attacks.
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This chapter briefly reviews prior work relevant to my thesis which will be discussed in Chapter 3 to 7.

Firstly, we overview the in-the-wild datasets collected in naturalistic conditions for audio-visual speech

in Section 2.1. Next, we describe feature extraction approaches relevant to this thesis in Section 2.2.

Finally, three modelling strategies and three modelling components are introduced in Section 2.3 and 2.4,

respectively, which are served to set the stage for understanding our proposed methods surrounding the

topics of this thesis.

2.1 Datasets

AVSR has achieved significant progress in the performance due to the application of deep neural networks

and the availability of large datasets. However, most of these datasets [25, 48, 49, 20] do not reflect the

real scenarios on a daily basis. Particularly, they are subjected to controlled, laboratory conditions and

focused on simplistic tasks, such as digit recognition. Instead, recent research focus on collecting large

28
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Figure 2.1: Original images from videos in LRS2.

corpora of audio-visual speech data in naturalistic conditions. In this section, we review multiple publicly

available audio-visual datasets, which cover various languages (English, Mandarin Chinese, Spanish),

poses (frontal, profile) and recordings conditions (clean, noisy).

LRW [30] is a large-scale audio-visual dataset that contains 500 different words from over 1 000 speakers

and was collected from BBC programs. Each utterance has 29 frames (1.16 seconds) and its boundaries

are centered around the target word. The dataset is divided into training, validation and test sets. The

training set contains at least 800 utterances for each class while the validation and the test sets contain 50

utterances each.

LRW-1000 [50] is a large-scale audio-visual mandarin dataset collected from Chinese national news

programs. It contains a total of 718 018 samples for 1 000 mandarin words, recorded from more than

2 000 subjects. The average duration for each sequence is 0.3 second, and the total length of all sequences

is about 57 hours. The videos are divided into a training set with 603 193 utterances, a validation set with

63 237 utterances and a test set with 51 588 utterances, respectively. This dataset is even more challenging

than LRW considering its huge variations in speaker properties, background clutters, scale, etc.

LRS2 [51] is a large-scale audio-visual English dataset collected from BBC programs. It consists of

144 482 video clips with a total duration of 224.5 hours. The videos are divided into a pre-training set

with 96 318 utterances (195 hours), a training set with 45 839 utterances (28 hours), a validation set with

1,082 utterances (0.6 hours) and a test set with 1 243 utterances (0.5 hours). Examples are presented in
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Figure 2.1.

LRS3 [52] is the largest publicly audio-visual English dataset collected from TED and TEDx talks. It

contains 438.9 hours with 151 819 utterances. Specifically, there are 118 516 utterances in the pre-train

set (408 hours), 31 982 utterances in the train-val set (30 hours) and 1 321 utterances in the test set (0.9

hours).

CMLR [53] is a large-scale audio-visual Mandarin dataset collected from Chinese national news program.

It contains 102 072 clips with transcriptions. The training, validation and test sets contain 71 448 (60.6

hours), 10 206 (8.6 hours) and 20 418 (17.3 hours) clips, respectively. To the best of our knowledge,

CMLR is the largest publicly available dataset in Mandarin.

CMU-MOSEAS [54] is a large-scale dataset, which contains multiple languages, and was collected from

YouTube videos. It consists of 40 000 transcribed sentences and includes Spanish, Portuguese, German

and French. We only consider the Spanish videos with a total duration of 15.7 hours. We divided the data

into training and test sets which contain 8 287 videos (15 hours) and 329 videos (0.7 hours), respectively.

Multilingual TEDx [55] is a multilingual corpus collected from TEDx Talks. It covers 8 languages

with manual transcriptions and has a total duration of 765 hours. For the purposes of this study, we only

consider the Spanish videos and use the data split proposed in [55]. We manually cleaned the dataset

to exclude videos where the speaker is not visible, resulting in a total of 44 745 videos (73.0 hours) for

training, 403 videos (0.7 hours) for validation and 302 videos (0.5 hours) for testing. It should be noted

that we only use the training set in this study.

GRID [56] is an audio-visual dataset contains of 33 speakers and 33000 utterances (1000 per speaker).

Each utterance is composed of six words taken from the combination of the following components:

<command: 4><colour: 4><preposition: 4><letter: 25><digit: 10><adverb: 4>, where the number of

choices for each component is indicated in the angle brackets. In this work, we follow the evaluation

protocol from [57] where 16, 7 and 10 subjects are used for training, validation and testing, respectively.

Lombard GRID [38] is an audio-visual dataset that consists of 5400 utterances from 54 speakers (30

females and 24 males), with 100 utterances (50 Lombard and 50 plain) per speaker. Each utterance is

composed of a six word sequence following the same pattern in GRID [56]. During speaking, both frontal

and profile faces were simultaneously recorded at 25 frames per second (fps) and audio was recorded
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Table 2.1: Details of Audio-Visual Datasets used in this thesis. CMS and MTS denote the Spanish parts
of the CMU-MOSEAS and Multilingual TEDx datasets, respectively.

Dataset Language Transcriptions Utterances Hours

Publicly Available Datasets

GRID [56] English ✓ 34 000 28

Lombard GRID [38] English ✓ 54 00 7

LRW [30] English ✓ 538 766 157

LRW-1000 [50] Mandarin ✓ 718 018 57

LRS2 [19] English ✓ 144 482 223

LRS3 [52] English ✓ 151 819 438

CMLR [53] Mandarin ✓ 102 112 61

MTS [55] Spanish ✓ 45 450 71

CMS [54] Spanish ✓ 8 616 16

AVSpeech [58] English ✗ 350 991 641

Non-Publicly Available Datasets

MVLRS [19] English ✓ 500k 730

LSVSR [32] English ✓ 2 934 899 3 886

YT-31k [33] English ✓ - 31 000

YT-90k [34] English ✓ - 90 000

VoxCeleb2clean [59] English ✗ 140k 334

at 48kHz and downsampled to 16kHz. Recordings for each utterance were collected in two conditions,

Lombard (L) and Non-Lombard (NL). The non-Lombard condition was performed by reading sentences

to a condenser microphone placed 30cm in front of the participants, in which the own-voice attenuation

was compensated. The Lombard condition follows the same setting, but speech-shaped noise at 80dB

sound pressure level (SPL) was presented to participants via headphones.

2.2 Feature Extraction

2.2.1 Mel-Frequency Cepstral Coefficients

MFCCs, which is commonly used as a low-dimensional set of features in speech recognition systems,

was first proposed by Bridle and Brown [60] as the spectrum-shaped coefficients transformed through a
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Figure 2.2: The diagram from raw audio waveforms to MFCCs

19-channel bandpass filters, and was further developed by Mermelstein [61, 62] as Mel-based cepstral

parameters. MFCCs are derived from modeling the human auditory system. Specifically, the extraction of

MFCCs from raw audio waveforms typically includes six steps as illustrated in Figure 2.2. Firstly, we

apply pre-emphasis filter to the raw audio waveforms, which aims to compensate the higher frequency

parts that was suppressed in raw audio waveforms as well as amplify the importance of high-frequency

formants. The signal after pre-emphasis is sliced to a number of audio clips through windows. At this

step, in order to keep the continuity of the speech at the ending points, smoothing window functions such

as the Hamming window [63] or the Hanning window [64] is applied on a speech frame. Furthermore,

DCT is applied to transform each windowed frame x[n], from the time domain to the frequency domain,

resulting in a frequency band that is linearly spaced. Since it is not consistent with human perception, in

which human ear can detect relatively small changes in lower frequencies, an approximate expression [65]

is used to map the powers of spectrum onto the Mel scale:

fMel = 2 595 × log10(1 +
f

700
) (2.1)

where f and fMel denotes the physical frequency, and the perceived frequency, respectively. We further

compute the energy of the Mel-filter bank vectors by taking the logarithm of the square magnitude; This

is because the human reaction to the sound is logarithmic. At this point, the log-Mel spectrum is a feature

representation, which is widely used in application of speech such as speaker recognition, phone detection.
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It is noted that the energy levels in adjacent bands of the log-Mel spectrum are correlated. To suppress the

spectrum, we apply Discrete Cosine Transformation (DCT) to the Mel frequency coefficients and obtain a

set of cepstral coefficients, known as MFCCs.

2.2.2 Active Appearance Models

The visual speech information, is often complementary to audio-visual system, especially when the audio

signal is degraded. As the lips are one of the most prominent features closely associated with visual speech,

the shape of the contours of the lips is often considered. Active Appearance Models (AAMs) [66] are a

type of statistical models to describe the shape and texture of objects using a set of detailed descriptive

parameters. To model a sequence of head motion, AAMs take as input a sequence of images and a set of

landmark points. The pixel values of the images represent visual textures. The landmark points provide

an estimated location of face boundaries. In the following paragraphs, we describe a detailed procedure

that estimates the parameters of AAMs. Specifically, an AMM is composed of three components, a Shape

Model, a Motion Model and an Appearance Model.

A Shape Model is defined by the vertex locations of the mesh. The shape of s with v vertices is defined as

s = (x1, y1, x2, y2, ..., xv, yv)T . The shape can be formalized as a linear combination of a base shape s0 plus

n shape vectors si.

s = s0 +

n∑︂
i=1

pisi (2.2)

where pi are the shape parameters. In order to obtain the base mesh s0, a collection of training face shapes

are normalised and PCA is further applied. The shape vectors si are computed by aligning every training

face shape to the base mesh s0 using similarity transform.

An Appearance Model is an image A(x) that the pixels x in the base mesh s0. In AAMs, the appearance

A(x) can be expressed as a linear combination of an appearance A0(x) plus n appearance Ai(x):

Ai(x) = A0(x) +
n∑︂

i=1

λiAi(x) (2.3)

where λi denotes the appearance parameters. It is noted that the appearance Ai are orthonormal in AMMs.

The appearance vectors Ai are computed by warping the input images to the base mesh using the piecewise
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Figure 2.3: An illustration of three sequence-to-sequence models: (a) CTC architecture. (b) RNN-
Transducer architecture. (c) Attention-based encoder-decoder architecture.

affine warps that is defined between the shape vector s and the base vector s0, and then PCA is applied

onto the warpped appearance.

A Motion Model is a warping function that warps the texture related to a shape. The choices for the

warping function include piece-wise affine and thin plate splines warps. Generally speaking, the motion

model defines how the image should be warped into a canonical reference frame given a shape s. It is

noted that once the images have been wrapped to the reference frame, we assume all image have same

dimensionality and share the same face shape.

2.3 Modeling Strategies

Sequence-to-sequence models aim to transform an input sequence to an output sequence with arbitrary

length, which has been widely used in the transformation between texts [67, 68], images [69, 70, 51], and

speech [71, 72, 73, 74, 75]. In this section, we briefly review the recent sequence-to-sequence modelling

approaches for speech recognition including CTC, RNN-T, and attention-based encoder-decoder models.

Before we introduce the modelling strategies in detail, we begin by introducing our notation. Specifically,

we assume that the input sequence is parameterised to a feature vector x = (x1, x2, ..., xT ), where xt ∈ Rd.

The output sequence y is denoted as y = (y1, y2, ..., yL), where T denotes the sequence length and L

denotes the number of symbols. Their architectures are briefly illustrated in Figure 2.3.
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2.3.1 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [4], is a type of algorithms that estimates the conditional

probability p(y|x) for an output sequence y given an input sequence x. The CTC loss is used to transcribe

directly between inputs and target outputs without any intermediate annotation. In particular, CTC sums

over the probability of all possible alignments to obtain the posterior of the target sequence:

p(y|x) =
∑︂

ỹ∈ÃCTC(y)

T∏︂
t=1

pt(ỹt|x1, ..., xt) (2.4)

where ÃCTC denotes the set of possible label sequences, which have a length of T including blank tokens

and repeated characters. The CTC loss is computed by the negative log likelihood of the posterior

probability. The CTC loss can be computed with a dynamic programming algorithm in a feedforward

direction. The gradients required to train CTC models can be optimised using the forward-backward

algorithm.

2.3.2 Attention-based Encoder-Decoder Model

Over the last several years, attention-based models [76, 72, 77] leads an improvements on sequence-to-

sequence applications such as speech recognition. Unlike a traditional ASR system which independently

train an acoustic model, a pronunciation model and a language model [78], attention-based encoder-

decoder models such as the Listen, Attend and Spell (LAS) model [72], greatly simplify the training

pipeline by jointly training these components in an end-to-end fashion and achieved comparable results to

state-of-the-art ASR systems.

Encoder Network is to model high-level representations h = (h1, h2, ..., hT ) from input sequences. Neural

networks such as LSTM and TCN, as introduced in Section 2.4, are generally serve as the encoder

network. It is important to note here that, the design of uni-directional should be considered for some

speech applications, which are constrained to be causal with no future context.

Decoder Network is responsible for interpreting the context vector from the encoder network. The

decoder network is generally a stack of uni-directional RNNs. At each time step, the recurrent unit

receives a hidden state from previous units and produce an output as well as its associated hidden states

for further recurrent units. Typically, the encoder-decoder without attention is to compress a sequence of
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input into a fixed-size vector. This vector is then fed to a recurrent neural network for decoding. Since

there is an instability to extract strong contextual correlation in a fixed-size vector from long variable

length sequences, the information in the encoder-decoder network is easily lost.

Attention Mechanism solves the limitation of instability in a basic encoder-decoder network. The

attention mechanism determines how much emphasis should be placed on each part and provides a

weighted context vector. An attention mechanism can be generalised to compute an alignment score of

the value conditioned on the query and associated keys. In a more formal formulation,

ci =

T∑︂
j=1

exp
(︂
ei j
)︂

∑︁T
k=1 exp (eik)

h j (2.5)

where

ei j = a(si−1, h j)

is an alignment model that scores how well the features at position j and the output at position i are

correlated. si−1 denotes the hidden score from the previous hidden state at the position i − 1.

The alignment model a can be formulated in various ways. For example, Bahdanau et al. [79] presents an

“additive attention” as the alignment model a such that

a(si−1, h j) = v⊤a tanh
(︂
Wasi−1 + Uah j

)︂
,

where Wa ∈ RD×D,Ua ∈ RD×2D and va ∈ RD are the weight matrices, and D denotes the dimension of the

hidden space. Depending on how the alignments between output and input frames are designed, different

types of attention mechanism can also be represented in a form of Dot-Product [80], Location-Base [80],

Content-Base[81], Scaled Dot-Product [67], and etc..

2.3.3 Recurrent Neural Network Transducer

Recurrent Neural Network Transducer (RNN-T) [71, 82, 83, 84, 85], was proposed as an extension to

the CTC-based modelling approach for sequence labeling tasks has become popular recently. Compared

with conventional ASR, RNN-T model has an implicit language model and can directly predict tokens

(characters or word-pieces) from audio features in an end-to-end manner. Furthermore, RNN-T has
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the advantage of streamability over encoder-decoder based ASR models. Specifically, RNN-T allows

the output to be decoded as soon as the first token has been encoded instead of waiting until the entire

utterance is available.

RNN-T is built conditioned on the previous non-blank labels and acoustic embedding. In one specific

formalism, we define the conditional distributions of RNN-T:

p(y|x) =
∑︂

ỹ∈ÃRNNT(y)

T+L̃∏︂
i=1

pt(ỹi|x1, ..., xti−1 , y0, ..., yli−1) (2.6)

where ÃRNNT denotes the set of possible label sequences, which have a length of T and L̃ labels including

blank tokens and repeated characters. The conditional distributions can be parameterised by neural

networks. The whole model can be optimised using the forward-backward algorithm by maximising

Equation 2.6.

An RNN-T model typically consists of three parts: the encoder network, the prediction network and the

joint network, as illustrated in Figure 2.3b. Specifically, Encoder network is analogous to the acoustic

model, which converts the input to high-level representations. Prediction network produces the embedding

conditioned on the previous non-blank output label. Note that the initial input of the prediction network is

an all-zero tensor. The prediction network can be modelled by temporal modules with casual settings, such

as LSTM, casual CNN or casual transformer network. Joint network is built using a stack of feed-forward

layers. which takes as input both the embedding from the encoder and the output given the previous

non-blank label index from the prediction network. At the top of the RNN-T, the output probability

distribution is computed by a softmax layer.

2.4 Neural Networks

2.4.1 Recurrent Neural Networks

Recurrent Neural Network (RNN) is a class of neural networks that is capable of modelling temporal

dependencies in time-dependent systems. It maintains a set of hidden unit activations, which is fed

back into the network along with the inputs through time [86, 87]. The use of a RNN has been widely

adopted in the study of sequential data, such as language modelling [88], machine translation [68],
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speech recognition [89], and time series forecasting [90]. However, Basic RNN architectures suffer from

the problem of vanishing gradients. Specifically, during the back-propagation, the gradient becomes

smaller and smaller through layers and also through time [91, 92]. Long Short-Term Memory networks

(LSTM) [93], as a specialised type of RNNs, are designed to solve the problem of gradient vanishing in

vanilla RNNs. Specifically, in this architecture, an LSTM cell makes decision by considering the current

input, previous output and previous hidden state.

Fully-Connected LSTM (FC-LSTM) is the vanilla version of LSTM where the input, cell output and

states are all temporal vectors. A FC-LSTM unit is composed of a memory cell ct, an output gate ot, a

forget gate ft and an input gate it, respectively. The memory cell remembers the dependencies among

different elements. The three gates decide which information is allowed in the memory cell. The forward

pass of a LSTM unit is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ft

it

ot

c̃t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ

σ

σ

tanh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(W

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ht−1

xt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ + b) (2.7)

ct = ft ⊙ ct−1 + it ⊙ c̃t (2.8)

ht = ot ⊙ tanh(ct), (2.9)

where c̃t is a memory cell candidate for the current input, ht is the hidden state of the LSTM unit, W and

b denote the weight matrix and the bias, respectively. ⊙ is element-wise multiplication.

Convolutional LSTM (ConvLSTM) [90] is a variant of LSTM but internal matrix multiplications

are substituted by convolutional operations. Stemming from the poverty of the spatial correlation

modelling in FC-LSTM, ConvLSTM are capable of modelling spatiotemporal sequence with the leverage

of convolutional kernels with the use of convolutional architecture. Besides this, they preserve the

advantages of FC-LSTMs which is advantageous to capture long and short-term temporal dependencies.

Therefore, ConvLSTM are considered as an ideal candidate for spatialtemporal sequence problems such

as action recognition and VSR.
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2.4.2 Temporal Convolutional Networks

The concept of “convolution” was firstly proposed by LeCun et al. in [94] to recognise handwritten zip

code recognition. Time-Delay Neural Network (TDNN), also known as one-dimensional convolutional

network, where the convolution is performed in time domain, has been applied to phoneme recognition [95].

Yamaguchi et al. [96] combined pooling operation and TDNN to achieve a speaker-independent isolated

word recognition system. A modified architecture of TDNN has gained tremendous popularity in [97],

who used it as a component of acoustic model and proposed the operation of sub-sampling to reduce

the computational cost. Furthermore, the design of dilation operation [98] newly introduced in temporal

convolutional networks enlarges the reception field exponentially with linearly increasing number of

parameters, which has shown remarkable success on sequence-to-sequence mapping problems such

as speech generation and text-to-speech [99]. More recently, Bai et al. [100] described a simple yet

effective TCN architecture which outperformed baseline RNNs, suggesting that TCN can be a reasonable

alternative for RNNs on sequence modelling problems. Following this work, it was further demonstrated

in [3] that a multi-scale TCN could achieve better performance than RNNs on lip-reading of isolated

words, which is also the state-of-the-art model so far. Such multi-scale TCN stacks the outputs from

convolutions with multiple kernel sizes to gain a more robust temporal features, which has already been

shown to be effective in other computer vision tasks utilising multi-scale information such as the semantic

segmentation [101, 102, 103].

Training TCNs on the raw time signal [104, 105, 106, 107] have been shown to match the recognition

performance of classical feature extraction pipelines. Golik et al. [106] adopted one-dimensional

convolutional layers that perform filtering in time and showed that the first convolutional layer learn

a spectrograms that are non-linearly distributed in frequency. Sainath et al. [107] firstly show raw

waveform and log-mel features match in performance based on the proposed Convolutional, Long

Short-Term Memory Deep Neural Network (CLDNN). More recently, Parcollet et al. [105] empirically

showed that an waveform-based speech recognition model outperform previously E2E systems relying on

pre-computed acoustic features by a margin of 1.2% on the Wall Street Journal dataset.

Dilation Convolutional Network (DCN) is a class of convolutional networks that expands kernels by

inserting holes between consecutive elements. An illustration of dilated temporal convolution is shown
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(a) (b) (c)

Figure 2.4: (a): Dilated Temporal Convolution (Rate = 1), (b): Dilated Temporal Convolution (Rate = 2).
(c): Dilated Temporal Convolution (Rate = 3).
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Figure 2.5: An illustration of a stack of causal temporal convolution layers with the convolution filter size
of 2.

in Figure 2.4. The design of skip can enlarge the receptive view of the network exponentially. Instead

of using vanilla convolution, dilation convolution has an advantage of capturing a global view of the

input with fewer parameters. The design of dilation convolution [98] has been applied in the domain of

computer vision [3], signal processing [108], and natural language processing [100].

Casual Convolution is a type of convolutional, in which the data ahead of the current position are not

involved in calculation. An illustration of a stack of casual convolution is shown in Figure 2.4. By defining

the convolution in a design of causality, the future time steps will not be affected when predicting the

value of the next one. The casual design in temporal convolution can be achieved by padding operations.

In particular, we pad the layer’s input with zeros in the front so that we can also predict the values of early

time steps in the frame.

2.4.3 Transformer

Transformer is an encoder-decoder architecture that utilises a self-attention mechanism to transform from

a sequence of elements into another sequence. It leads the performance in several sequence modelling

tasks, such as language modelling [109], machine translation [67]. More recently, transformer has been

applied in speech processing [110, 111, 112]. It is typically in conjunction with convolutional neural
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networks [111, 112]. In [111], Kong et al. proposed a CNN plus Transformer-based network for sound

event detection, where a transformer is built on the top of a CNN, while in [112], Gulati et al. proposed

convolution augmented transformer module which combines CNN and attention module in each block.

More recently, Gong et al. [113] proposed a convolutional-free backbone and purely leverage attention

mechanism to perform audio classification.

Transformer starts with a positional embedding module, followed by a stack of attention blocks. In each

attention block, there are a self-attention module, a layer normalisation layer, a feed-forward module,

and a second layer normalisation (LN) layer stacked in order. as illustrated in Figure 2.6. The decoder

which is composed of an embedding module and a set of residual multi-head attention blocks, receives the

embedding from the input and then performs decoding through a stack of attention blocks.

There are many variants in transformers, such as conformers [112], that incorporates both convolutional

neural networks and transformer for local and global temporal modelling simultaneously. In Chapter 4,

we show that conformers can be seamlessly applied to solve an AVSR problem.

N x

Layer 
Normalisation

Feed-forward 
Networks

Layer 
Normalisation

Multi-head 
Attention

Positional Embedding

Input

Output

Figure 2.6: Illustration of a N multi-head attention blocks in the encoder of a transformer.

Multi-Headed Attention is a class of attention modules which performs attention mechanisms several
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times in parallel. As introduced in Section 2.3.2, an attention mechanism is capable of modeling global

dependencies among elements. Specifically, it computes a weighted score of the value dependent on a set

of queries and keys, where the queries, keys, and values are all vectors. In a multi-headed attention module,

the transformer linearly projects the queries, keys and values K times. The encoder of the transformer is

composed of a stack of multi-headed blocks, The attention function is performed in parallel on each head

and their embeddings are concatenated and once again projected into a feature for the next block through

a dense layer. In each decoding block, there is an encoder-decoder attention which is applied to help the

decoder to focus on the relevant part of the input. In particular, this encoder-decoder attention receives the

features from the previous self-attention module as queries and the features from the encoder as keys and

values.

Feed-Forward Network is built on top of the first LN layer in each transformer block. In a feed-forward

network, there is a linear layer that projects the features with a dimension size of D1 to a space with higher

dimensional size of D2, followed by a Rectified Linear Units (ReLU) activation function. A second linear

layer, which transformed the hidden embedding back to the original hidden space, is added at the top of

the module in the end. The residual connections are injected in each feed-forward module.

Layer Normalization (LN) is a type of regularisation techniques to normalise the distributions of

intermediate layers. It computes the mean and variance from all the summed inputs to the neurons in a

layer. Given a sample h ∈ RD, we calculate its mean µ and variance σ using:

µ =
1
D

D∑︂
i=1

hi (2.10)

σ2 =
1
D

D∑︂
i=1

(hi − µ)2 (2.11)

LN = γ
h − µ
√
σ2 + ϵ

+ β (2.12)

where hi is the i-th element in h, γ and β are learnable parameters for scaling and shifting, respectively.

Positional Embedding (PE) is a class of feature vectors that explicitly contains relative position informa-

tion. A Sinusoidal positional embedding is built using sin and cos functions. The PE is formulated as
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follows:

PEt[i] = sin(t/100002i/d) (2.13)

PEt[2i + 1] = cos(t/100002i/d), (2.14)

where PEt is defined as the positional embedding at position t of the input sequence. PE is injected to

feature embeddings before the first block of multi-head self-attention block. The author hypothesised the

equation shown above would allow the model to learn the relative positions.

2.5 Summary

In this chapter, we show that AVSR is still a rather challenging problem and confirmed the importance of

datasets, feature extraction and network architectures in performing AVSR in naturalistic conditions. We

will present our methods of AVSR for isolated words and continuous speech in Chapter 3 and Chapter 4,

respectively. Next, we will explore how to leverage the unlabelled data to perform audio-visual self-

supervision learning in Chapter 5. We will further investigate the Lombard effect on an end-to-end AVSR

system in Chapter 6. Lastly, we will present a novel audio-visual synchronisation-based adversarial

defense strategy against adversarial examples in Chapter 7.
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In this chapter, we investigate the problem of AVSR for isolated words. In particular, this chapter presents

various novel network architectures that can significantly improve the performance of AVSR for isolated

words, including an End-to-End VSR model consisting of ResNet and BGRU (Sec. 3.1.1), a Multi-Scale

Temporal Convolutional Network (MS-TCN) (Sec. 3.1.2), a Densely-Connected Temporal Convolutional

Network (DC-TCN) (Sec. 3.1.3), and a Depthwise Separable Temporal Convolutional Network (DS-TCN)

(Sec. 3.1.4). In addition to those architectures, this chapter discusses how different data augmentation

techniques can affect the performance of those models (Sec. 3.1.5), while we also apply the knowledge

distillation technique (Sec. 3.1.6) to further refine the recognition accuracy and to achieve the new

state-of-the-art. The works are published in ICASSP2018 [2], ICASPP2020 [3], WACV2020 [114],

ICASSP2021 [115], and ICASSP2022 [116] respectively.

VSR, also known as lip-reading, consists of the task of recognising a speaker’s speech content from visual

information alone, typically the movement of the lips. This is particularly useful in noisy environments

44
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where the audio signal is corrupted, and can be used in combination with acoustic speech recognisers in

order to compensate for the degraded performance due to noise. Despite of many recent advances, VSR is

still a challenging task. Multiple factors contribute to the mismatch between theory and practice.

Firstly, VSR follows a two-step approach, where features were first extracted from the mouth region,

with the DCT being the most popular feature extractor, and then fed to a HMMs for modeling of the

temporal dynamics. The rise of deep learning has led to significant improvement in the performance of

lip-reading methods. Similar to traditional approaches, the deep-learning-based methods usually consist

of a feature extractor (front-end) and a sequential model (back-end). Autoencoder models were applied as

the front-end in the works of [117, 118, 119] to extract deep bottleneck features (DBF) which are more

discriminative than DCT features. The state-of-the-art approach for recognition of isolated words is the

one proposed in [17]. It achieved the state-of-the-art performance on the LRW [19], which is the largest

publicly available dataset for isolated word recognition.

Another major limitation of current deep lip-reading models barring their use in practical applications

is their computational cost. Many speech recognition applications rely on on-device computing, where

the computational capacity is limited, and memory footprint and battery consumption are also important

factors. As a consequence, few works have also focused on the computational complexity of visual speech

recognition [21, 22], but such models still trail massively behind full-fledged ones in terms of accuracy.

In this chapter, we aim to address those challenges, and we have successfully improved the overall

performance to achieve a new state-of-the-art with simplified training procedures. This is achieved by

combining all the latest data augmentation methods, using the recently proposed DC-TCN [114], word

boundary indicators [120] and self-distillation [121]. The accuracy achieved is 92.8% for a single model

and 93.4% for an ensemble. The performance can be slightly improved to 93% and 93.6%, respectively,

by pre-training in a self-supervised manner on the LRS3 dataset. Secondly, we simplify the training

procedure, reducing training time from 3 weeks to 1 week GPU-time, and avoid relying on a cumbersome

3-stage sequential training. For this purpose, we adopt a cosine scheduler [122] and show that training

from scratch in one stage is not only feasible, but in fact can produce state-of-the-art results. Thirdy, we

propose a variable-length augmentation procedure to improve the generalization capabilities of the trained

model when applied to sequences of varying length (all LRW videos have a length of 29 frames). Fourthly,

time masking is the most effective augmentation method followed by mixup. The use of DC-TCN
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Figure 3.1: (a): BGRU based audio-only model; (b): BGRU based visual-only model; (c): BGRU based
audio-visual model.

significantly outperforms the MS-TCN which in turn outperforms the BGRU model. The use of word

boundaries and self-distillation is also beneficial with the former resulting in greater improvement. Finally,

the error analysis suggests that all proposed methods improve performance by significantly increasing the

classification accuracy of difficult words.

3.1 Methodology

3.1.1 BGRU based Temporal Model

The baseline model that we extend in this work is based on [2]. The VSR model is similar to [17]

and consists of a spatiotemporal convolution followed by a 34-layer ResNet and a 2-layer BGRU. A

spatiotemporal convolutional layer is capable of capturing the short-term dynamics of the mouth region

and is proven to be advantageous, even when recurrent networks are deployed for back-end [16]. It

consists of a convolutional layer with 64 3D kernels of 5 by 7 by 7 size (time/width/height), followed by

batch normalization and rectified linear units. We use the 34-layer identity mapping version, which was

proposed for ImageNet [123]. The ResNet drops progressively the spatial dimensionality until its output

becomes a single dimensional tensor per time step. We should emphasize that we did not make use of
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pre-trained models, as they are optimized for completely different tasks (e.g. static colored images from

ImageNet or CIFAR). Finally, the output of ResNet-34 is fed to a 2-layer BGRU which consists of 1024

cells in each layer, as shown in Figure 3.1b.

The ASR model, shown in Figure 3.1a, consists of an 18-layer ResNet followed by two BGRU layers.

There is no need to use a spatiotemporal convolution front-end in this case as the audio waveform is a

1D signal. We use the standard architecture for the ResNet-18 with the main difference being that we

use 1D instead of 2D kernels, which are used for image data. A temporal kernel of 5ms with a stride

of 0.25ms is used in the first convolutional layer in order to extract fine-scale spectral information. The

output of the ResNet is divided into 29 frames using average pooling in order to ensure the same frame

rate as the video is used. These audio frames are then fed to the following ResNet layers which consist of

the default kernels of size 3 by 1 so that the deeper layers extract long-term speech characteristics. The

output of the ResNet-18 is fed to a 2-layer BGRU which consists of 1024 cells in each layer (using the

same architecture as in [17]).

In the AVSR model, as illustrated in Figure 3.1c, the BGRU outputs of each stream are concatenated

and fed to another 2-layer BGRU in order to fuse the information from the audio and visual streams and

jointly model their temporal dynamics. The output layer is a softmax layer which provides a label to each

frame. The sequence is labelled based on the highest average probability.

3.1.2 MS-TCN based Temporal Model

The state-of-the-art approach for visual speech recognition of isolated words is the one proposed in [2]. It

consists of a modified ResNet-18 backbone in which the first convolution has been substituted by a 3D

convolution of kernel size of kernel size of 5 × 7 × 7. The rest of the network follows a standard design

up to the global average pooling layer. A Bidirectional Gated Recurrent Unit (BGRU) network follows to

model temporal information.

Temporal convolutions have emerged as a promising alternative to RNNs [100], in some cases showing

remarkable success on a number of tasks [99]. A temporal convolution takes a time-indexed sequence of

feature vectors as input, and maps it into another such sequence (i.e., the length of the sequence is not

altered) through the use of a 1D temporal convolution. Drawing a parallel to the ResNet’s basic block,

a temporal convolutional block consists of two sets of temporal conv-batchnorm-activation layers, and
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dropout can be used after each activation. A skip connection/downsample layer is also used, going from

the block input to its output. Several such temporal convolutional blocks can be stacked sequentially to

act as a deep feature sequence encoder. Then, a dense layer is applied to each time-indexed feature vector.

Finally, since the aim is sequence classification, a consensus function, in our case a simple averaging, is

used.

Dilated convolutions are typically used within TCN to increase the receptive field at a faster rate. In

particular, within block i, we use a stride of 2i−1. This architecture is illustrated in Figure 3.2a. It is

important to note that TCN can be designed to be causal, so at time t only information prior to it is used,

or non-causal. Since we are classifying the whole sequence at once, we use the latter design.

Since the input and output of a temporal convolution have the same length at the temporal domain, the

receptive field of a TCN is defined by the kernel sizes and the stride. Thus, on a standard TCN, all

activations at a specific layer share the same temporal receptive field. We would like to provide the

network with visibility into multiple temporal scales, in a way that short term and long term information

can be fused during the feature encoding. To this end, we propose a multi-scale TCN. In this TCN variant,

each temporal convolution consists now of several branches, each with different kernel size. Assuming

we have a number of C channels, when using n branches, each branch has C/n kernels, and their outputs

are simply combined through concatenation. In this way, every convolution layer fuses information at

several temporal scales. We depict this architecture in Figure 3.2b. The full lip-reading model is shown in

Figure 3.2.

3.1.3 DC-TCN based Temporal Model

Although Temporal Convolutional Networks (TCN) have recently demonstrated great potential in many

vision tasks, its receptive fields are not dense enough to model the complex temporal dynamics in

lip-reading scenarios. To address this problem, we introduce dense connections into the network to

capture more robust temporal features. Densely connected networks have received broad attention since

their inception in [124], where a convolutional layer receives inputs from all its preceding layers. Such

densely connected structure can effectively solve the vanishing-gradient problem by employing shallower

layers and thus benefiting gradient propagation. The authors of [125] have applied dense connections to

dilated convolutions to enlarge the receptive field sizes and to extract denser feature pyramid for semantic



3.1. Methodology 49

(a) TCN (b) Multiscale TCN

Figure 3.2: (a) Temporal Convolutional Network (TCN). (b) Our Multi-scale TCN, which is used in the
lip-reading model.

segmentation. Recently, a simple dense TCN for Sign Language Translation has been proposed in [126].

Our work is the first to explore the densely connected TCN for word-level lip-reading, where we present

both a fully dense (FD) and a partially dense (PD) block architectures with the addition of the channel-wise

attention method described in [127].

We study two approaches of constructing DC-TCN blocks. The first approach applies dense connections

for all TC layers, which is denoted as the fully dense (FD) block, as illustrated at the top of Figure 3.3,

where the block filter sizes set K = {3, 5} and the dilation rates set D = {1, 4}. As shown in the figure,

the output tensor of each TC layer is consistently concatenated to the input tensor, increasing the input

channels by C0 (the growth rate) each time. Note that we have a Squeeze-and-Excitation (SE) block [127]

after the input tensor of each TC layer to introduce channel-wise attentions for better performance. Since

the output of the top TC layer in the block typically has much more channels than the block input (e.g.

Ci+4C0 channels in Figure 3.3), we employ a 1×1 convolutional layer to reduce its channel dimensionality

from Ci + 4C0 to Cr for efficiency (“Reduce Layer” in Figure 3.3). A 1×1 convolutional layer is then

applied to convert the block input’s channels if Ci ≠ Cr. In the fully dense architecture, TC layers are

stacked in a receptive-field-ascending order.

3.1.4 DS-TCN based Temporal Model

Recent works have placed emphasis on aspects such as improving performance by finding the optimal

architecture or improving generalization. However, there is still a significant gap between the current
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Figure 3.3: The architectures of the fully dense block (Up) and the partially dense block (bottom) in
DC-TCN. We have selected the block filter sizes set K = {3, 5} and the dilation rates set D = {1, 4} for
simplicity. In both blocks, Squeeze-and-Excitation (SE) attention is attached after each input tensor. A
reduce layer is involved for channel reduction.

methodologies and the requirements for an effective deployment of lip-reading in practical scenarios.

Many speech recognition applications rely on on-device computing, where the computational capacity is

limited, and memory footprint and battery consumption are also important factors. As a consequence,

few works have also focused on the computational complexity of visual speech recognition [21, 22], but

such models still trail massively behind full-fledged ones in terms of accuracy. In this work, we propose

a series of architectural changes that slashes the computational cost to a fraction of the (already quite

efficient) original model. Specifically, the ResNet-18 backbone can be readily exchanged for an efficient

one, such as a version of the MobileNet [128] or ShuffleNet [129] families. However, there is no such

equivalent for the head classifier. The key to designing the efficient backbones is the use of depthwise

separable convolutions (a depthwise convolution followed by a pointwise convolution) [130] to replace

standard convolutions. This operation dramatically reduces the amount of parameters and the number of

FLOPs. Thus, we devise a novel variant of the Temporal Convolutional Networks that relies on depthwise

separable convolutions instead. For the purpose of this study, we use ShuffleNet v2 (β×) as the backbone,

where β is the width multiplier [129]. This architecture uses depthwise convolutions and channel shuffling



3.1. Methodology 51

Image Sequence

3D Conv.

ResNet-18

MS-TCN

Softmax

(a)

Image Sequence

3D Conv.

ShuffleNet V2

TCN

Softmax

(b)

Image Sequence

3D Conv.

ShuffleNet V2

DS-TCN

Softmax

(c)

Figure 3.4: (a): Base architecture with ResNet18 and multi-scale TCN, (b): Lipreading model with
ShuffleNet v2 backbone and multi-scale TCN back-end. (c): Lipreading model with ShuffleNet v2
backbone and depthwise separable TCN back-end.

which is designed to enable information communication between different groups of channels. ShuffleNet

v2 (1.0×) has 5× fewer parameters and 12× fewer FLOPs than ResNet-18. The architecture is shown in

Figure 3.4b.

We note that the cost of the convolution operation with kernel size greater than 1 in MS-TCN is non-

negligible. To build an efficient architecture (shown in Figure 3.4c), we replace standard convolutions with

depthwise separable convolutions in MS-TCN. We first apply in each channel a convolution with kernel

size k, where channel interactions are directly ignored. This is followed by a point-wise convolution

with kernel size 1 which transforms the Cin input channels to Cout output channels. Thus, the cost of

convolution is reduced from k ×Cin ×Cout (standard convolution) to k ×Cin +CinCout. The architecture is

denoted as a Depthwise Separable Temporal Convolutional Network (DS-TCN).

3.1.5 Data Augmentation in AVSR

We also investigate how different data augmentation techniques can affect the performance of AVSR

models. In this chapter, four commonly-used data augmentation techniques are examined, including

Random Cropping, Flipping, Mixup, and Time Masking.



52 Chapter 3. Audio-Visual Speech Recognition for Isolated Words

….

Model 0

CE loss

Step 0

CE loss

Model 1

Model 0

KL loss

Step 1

CE loss

Model 2

Model 1

KL loss

Step 2

CE loss

Model n-1

KL loss

Model n

Step n

student

teacher

Figure 3.5: The pipeline of knowledge distillation in generations

Random Cropping: We randomly crop an 88 × 88 patch from the mouth ROI during training. At test

time, we simply crop the central patch. This is a commonly used augmentation method that has been used

successfully in several lip-reading works [3, 2].

Flipping: We randomly flip all the frames horizontally in a video with a probability of 0.5. This

augmentation is commonly used in combination with random cropping [3, 2].

Mixup: We create new augmented training examples by linearly combining two input video sequences

and their corresponding targets. We set the linear combination weight λ to be 0.4 similarly to [115].

Time Masking: We mask N consecutive frames for each training sequence where N is sampled between

0 and Nmax using a uniform distribution. Each masked frame is replaced with the mean frame of the

sequence it belongs to. This augmentation is based on SpecAugment [131], which has been proposed for

ASR applications, and aims at making the model more robust to small segments with missing frames.

3.1.6 Knowledge Distillation

Knowledge Distillation (KD) [132] was initially proposed to transfer knowledge from a teacher model

to a student model for compression purposes, i.e., the student capacity is much smaller than the teacher

one. Recent studies [121, 133, 134] have experimentally shown that the student can still benefit when the

teacher and student network have identical architectures. This naturally gave rise to the idea of training in

generations. In particular, the student of one generation is used as the teacher of the subsequent generation.

This self-distillation process, called born-again distillation, is iterated until no further improvement is

observed. Finally, an ensemble can be optionally used so as to combine the predictions from multiple

generations [121]. The training pipeline is shown in Fig. 3.5.
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We use born-again distillation for improving the performance of the state-of-the-art model. We also use

the standard knowledge distillation to train a series of efficient models where each student has smaller

capacity than the teacher, which helps recover some of the performance drop of these efficient networks.

In both cases, we aim to minimise the combination of cross-entropy loss (LCE) for hard targets and

Kullback-Leibler (KL) divergence loss (LKD) for soft targets. Let us denote the labels as y, the parameters

of the student and teacher models as θs and θt, respectively, and the predictions from the student and

teacher models as zs and zt, respectively. δ(·) denotes the softmax function and α is a hyperparameter to

balance the loss terms. The overall loss function is calculated as follows:

L = LCE(y, δ(zs; θs)) + αLKD(δ(zs; θs), δ(zt; θt)) (3.1)

Note that we have omitted the temperature term, which is commonly used to soften the logits of the LKD

term, since we found it to be unnecessary in our case.

3.2 Experiments

3.2.1 Preprocessing

We used RetinaFace [135] tracker to detect the faces and Face Alignment Network (FAN) [136] to align

the landmarks. We then remove the size and rotation differences through registering faces to the mean face

in the training set. A bounding box of 96 × 96 is used to crop the mouth ROIs. Each frame is normalised

by subtracting the mean and dividing by the standard deviation of the training set.

3.2.2 Training Details

Our proposed model was trained in an end-to-end fashion, where the weights are randomly initialised. We

train 80 epochs with a batch size of 32 on LRW, and measure the top-1 accuracy using the validation set to

determine the best-performing checkpoint weights. We adopt AdamW [137] as the optimiser, where the

initial learning rate is set to 0.0003. A cosine scheduler [122] is used to steadily decrease the learning rate

from the initial value to 0. BatchNorm layers [138] are embedded to accelerate training convergence, and

we use dropouts with dropping probabilities 0.2 for regularisation. The reduction ratio in the SE block is

set to 16, and the channel value C2 of DC-TCN’s input tensor is set to 512. Furthermore, we adopt the
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Self-Distillation
Models

Top-1 Acc. (%)
Scratch LiRA(LRS3) LRS2&3+AVS

Teacher 92.1 92.3 92.9
Student 1 92.5 92.8 93.5
Student 2 92.8 92.9 93.5
Student 3 92.5 93.0 93.5
Student 4 - 92.9 93.3

Ensemble 93.4 93.6 94.1

Table 3.1: Performance of self-distillation models (Teacher = ResNet-18 +DC-TCN). The best-performing
models from Table 3.3 are serving as teachers in first row. For each student model, the model from the line
above is used as its teacher, and “Student i” stands for the model after the i-th self-distillation iteration.

variable length augmentation as proposed in [3] to increase the model’s temporal robustness. We use the

same training parameters as [3]. The only exception is the use of Adam with decoupled Weight decay

(AdamW) [139] with β1 = 0.9, β2 = 0.98, ϵ = 10−9 and a L2 penalty of 0.01.

3.2.3 Initialisation

To investigate the impact of initialisation we consider three cases: 1) we train the model from scratch

using only the LRW training set, 2) we pre-train the encoder from Fig. 3.4 on the LRS3 dataset [140]

using the LiRA [1] self-supervised approach and fine-tune it on the LRW training set. 3) we pre-train the

encoder on LRS2 [19], LRS3 [140] and AVspeech [58] as described in [141].

3.3 Results

3.3.1 Ablation Study

Results for the ablation study are shown in Table 3.3. By removing one augmentation at a time we can

estimate its contribution to the final model. We see the time masking is the most important augmentation,

resulting in an absolute drop of 2.4% followed by mixup with a drop of 1.1%. By replacing DC-TCN with

MS-TCN, we observe that the performance drops by 2.1 %, which demonstrates the importance of dense

connections and the SE attention mechanism in DC-TCN. The performance drops by 2.4% by replacing

DC-TCN with BGRU. Additionally, the removal of word boundary indicators drops the performance by

1.7 %, which demonstrates the benefits of including auxiliary boundary indicators. Finally, we pre-train

the encoder in a self-supervised/supervised manner on the LRS3 /LRS2, LRS3 and AVspeech datasets
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Method Word
Boundary

Top-1
Acc. (%)

3D-CNN [30]

✗

61.1
ResNet-34 + BLSTM [17] 83.0
2*3D-CNN + BLSTM [142] 84.1
ResNet-18 + BLSTM [120] 84.3
ResNet-18 + BGRU + Cutout [143] 85.0
ResNet-18 + BGRU [144] 85.0
ResNet-18 +MS-TCN [3] 85.3
ResNet-18 +MS-TCN + S.D. [115] 88.5
ResNet-18 + DC-TCN [114] 88.4

Ours (w/o S.D., Scratch) 90.4
Ours (w/o S.D., LRS2&3+AVS) 91.1

Ours (Ensemble, Scratch) 91.6
Ours (Ensemble, LRS2&3+AVS) 92.1

ResNet-18 + BGRU [144]

✓

88.4
ResNet-18 + BLSTM [120] 88.8

Ours (w/o S.D., Scratch) 92.1
Ours (w/o S.D., LiRA(LRS3)) 92.3
Ours (w/o S.D., LRS2&3+AVS) 92.9

Ours (Ensemble, Scratch) 93.4
Ours (Ensemble, LiRA(LRS3)) 93.6
Ours (Ensemble, LRS2&3+AVS) 94.1

Table 3.2: Comparison with state-of-the-art methods on the LRW dataset in terms of classification
accuracy. Experiments are divided into two groups, with and without utilising word boundaries indicators,
respectively. “S.D.”: self-distillation. “Scratch”, “LiRA(LRS3)” and “LRS2&3+AVS” correspond to the
three pre-training strategies in Table 3.3.

and then fine-tune the model on the LRW training set, and this slightly increases the performance to

92.3 % / 92.9 %. It is clear from Table 3.2 that the proposed models significantly outperform the current

state-of-the-art.

3.3.2 Self-Distillation

Results for self-distillation experiments are presented in Table 3.1. We use the best two models from

Table 3.3 as teachers in the first round. It is clear that self-distillation results in a 0.6 % to 0.7 % absolute

improvement in all cases. In addition, an ensemble of all models (all students + teacher) leads to a further

absolute improvement of 0.6 %. These results suggest that self-distillation is beneficial for lip-reading.

However, we should point out that the improvement is smaller compared to [115], probably due to the
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Temporal Model Data Augmentation Word
Boundary

Pre-training Strategies Top-1
Acc. (%)Crop Flip Mixup TM Scratch LiRA(LRS3) LRS2&3+AVS

DC-TCN [114]

✓ ✓ ✓ ✓ ✓ - - ✓ 92.9
✓ ✓ ✓ ✓ ✓ - ✓ - 92.3
✓ ✓ ✓ ✓ ✓ ✓ - - 92.1
- ✓ ✓ ✓ ✓ ✓ - - 91.8
✓ - ✓ ✓ ✓ ✓ - - 91.7
✓ ✓ - ✓ ✓ ✓ - - 91.0
✓ ✓ ✓ - ✓ ✓ - - 89.7
✓ ✓ ✓ ✓ - ✓ - - 90.4

MS-TCN [3] ✓ ✓ ✓ ✓ ✓ ✓ - - 90.0

BGRU [2] ✓ ✓ ✓ ✓ ✓ ✓ - - 89.7

Table 3.3: Ablation studies of three temporal models on LRW dataset. Starting from the best-performing
DC-TCN model, we remove each data augmentation and the word boundaries indicators to examine their
effectiveness. Then we replace the DC-TCN with MS-TCN and BGRU. “Scratch” denotes a model trained
from scratch without using external data. “LiRA(LRS3)” indicates a self-supervised pre-trained model
using LiRA [1] on the LRS3 dataset, and “LRS2&3+AVS” indicates a fully supervised pre-trained model
on LRS2, LRS3 and AVSpeech.

much better teacher model which makes further improvement harder.

3.3.3 Audio-Visual Experiments

While lip-reading can be used in isolation, the most useful scenario is when combined with audio to

improve performance in noisy environments. In this section we show the performance of our model

when trained on audio only, visual only and audio-visual data under varying levels of babble noise. The

audio-only and audio-visual models are based on [2] but we apply the proposed changes as shown in

Figure 3.2. The performance under different Signal to Noise Ratio (SNR) levels is shown in Figure 3.6. We

also compute the performance of a TCN network trained with MFCC features. We use 13 coefficients (and

their deltas) using a 40ms window and a 10ms step. Performance of MFCCs is similar to the audio-only

model at high SNRs but becomes worse at low SNRs.

The audio-visual model is slightly better than the audio-only model at low SNRs but yields a clear

advantage at higher levels of noise. In particular, when using a clean audio signal, the audio-only model

attains 1.54% error rate, while the audio-visual model attains 1.04%. In the presence of heavy noise, e.g. 0

dB, the audio-visual error rate is 2.92%, while performance for the audio-only model goes down to 8.57%.

Similarly at -5dB, the audio-visual model achieves an error rate of 6.53% significantly outperforming

the audio-only model which has an error rate of 26.21%. We further compare the performance of the
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Figure 3.6: Performance for audio-only (A), video-only (V) and audio-visual (AV) models under different
babble noise levels. The baseline corresponds to the model presented in [2].

audio-only and audio-visual models with respect to our baseline [2], showing a clear gain throughout the

different noise levels.

3.3.4 Efficient Training

Given that we use a purely convolutional architecture, it is reasonable to test whether is possible to train a

lip-reading model from scratch. We empirically found that in fact it is possible to successfully train the

full-fledged model from scratch and achieve state of the art performance. To this end, we adopt a cosine

scheduler, which has been shown to be particularly effective [122]. Such training leads to competitive

performance in 1 week GPU-time.

However, we observe that it is also possible to first pre-train on a subset of the 10% hardest words,

which amounts to 50 classes for LRW†. Such initialization allows for faster training, and even yields a

small performance improvement. Thus, we adopt this pre-training strategy as it adds a minimal training

overhead.
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Student Backbone Student Back-end Distillation Top-1 Params FLOPs
(Width mult.) (Width mult.) Acc. ×106 ×109

ResNet-18 [3] MS-TCN (3×) - 85.3 36.4 10.31
ResNet-34 [2] BGRU (512) - 83.4 29.7 18.71
MobiVSR-1 [22] TCN - 72.2 4.5 10.75

ShuffleNet v2 (1×)
MS-TCN (3×) ✗ 84.4 28.8 2.23
MS-TCN (3×) ✓ 85.5 28.8 2.23

ShuffleNet v2 (1×)
DS-MS-TCN (3×) ✗ 84.4 9.3 1.26
DS-MS-TCN (3×) ✓ 85.3 9.3 1.26

ShuffleNet v2 (1×)
TCN (1×) ✗ 81.0 3.8 1.12
TCN (1×) ✓ 82.7 3.8 1.12

ShuffleNet v2 (0.5×)
TCN (1×) ✗ 78.1 2.9 0.58
TCN (1×) ✓ 79.9 2.9 0.58

Table 3.4: Performance of different efficient models, ordered in descending computational complexity,
and their comparison to the state-of-the-art on the LRW dataset. We use a sequence of 29-frames with
a size of 88 by 88 pixels to compute the multiply-add operations (FLOPs). The number of channels is
scaled for different capacities, marked as 0.5×, 1×, and 2×. Channel widths are the standard ones for
ShuffleNet V2, while base channel width for TCN is 256 channels.

3.3.5 Efficient Models

The frame encoder can be made more efficient by replacing the ResNet-18 with a lightweight ShuffleNet

v2 (shown in Figure 3.4b), as explained in section 3.1.3. We should note that we maintain the first

convolution of the network as a 3D convolution. Preliminary experiments showed ShuffleNet v2 [129]

yields superior performance over other lightweight architectures like MobileNetV2 [145]. It can be seen

in Table 3.4 that this change results in a drop of 0.9 % in accuracy while reducing both the number of

parameters and FLOPs.

The next step is the replacement of the MS-TCN head with its depthwise-separable variant, noted as

DS-MS-TCN. As shown in Table 3.4 this variant leads to a model with almost one third of parameters and

a 50 % reduction in FLOPs while achieving the same accuracy as the ShuffleNet v2 with a MS-TCN head.

Models can become even lighter (shown in Figure 3.4c) by reducing the number of heads to 1, denoted by

TCN, and by reducing the width multiplied of the ShuffleNet v2 to 0.5. In the former case, performance

drops by 3.4 %, and in the latter by a further 1.9 % resulting in accuracy of 78.1 %. However, it should be

† The list of “hardest words” is obtained from [17]
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noted that the number of parameters and FLOPs is significantly reduced for both models.

In order to partially bridge this gap, we explore Knowledge Distillation once again. Since now there

are higher capacity models that can act as teachers, we do not need to resort to self distillation. We first

explored the standard distillation approach in which we take the best-performing model as the teacher.

However, it is known that a wider gap in terms of architecture might mean a less effective transfer [146].

Thus, we also explore a sequential distillation approach. More specifically, for lower-capacity networks,

we use intermediate-capacity networks to more progressively bridging the architectural gap. For example,

for the ShuffleNet v2 (1×)+DS-MS-TCN, we can first train a model using the full fledged ResNet-18+MS-

TCN model as teacher, and use the ShuffleNet v2 (1×)+MS-TCN as the student. Then, on the second step,

we use the latter model as the teacher, and train our target model, ShuffleNet v2 (1×)+DS-MS-TCN, as

the student. This procedure resembles the self-distillation strategy described above in the sense that trains

a sequence of teacher-student pairs, where the previous student becomes the teacher in the next iteration.

However, unlike that strategy, it progressively changes the architecture from the full-fledged model to the

target architecture.

The results on the LRW dataset are shown in Table 3.4. Replacing the state-of-the-art ResNet-18+MS-TCN

with ShuffleNet v2 (1×)+ DS-MS-TCN leads to the same accuracy, after distillation, than the previous

state-of-the-art MS-TCN of [3], while requiring 8.2× fewer FLOPs and 3.9× fewer parameters. This is a

significant finding since the MS-TCN is already quite efficient, having slightly lower computational cost

than the lightweight architecture of MobiVSR-1 [22]. Another interesting combination is the ShuffleNet v2

(0.5×)+ TCN model, which achieves 79.9 % accuracy on LRW with as little as 0.58G FLOPs and 2.9M

parameters, a reduction of 17.8× and 12.5× respectively when compared to the ResNet-18+MS-TCN

model of [3].

3.3.6 Error Analysis

Difficulty Categories In order to better understand how the presented models improve the word

classification accuracy, we perform some error analysis. We divide the test samples in the LRW dataset

into five groups [114]. Each group contains 100 distinct isolated words and it is created based on the word

accuracy of the model in [2]. The 100 words with the highest classification accuracy are grouped in the

“Very Easy” group, the next 100 words in the “Easy” group and so on. The average classification accuracy
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Figure 3.7: A comparison of our method and two baseline methods (End-to-End AVR [2] and Multi-Scale
TCN [3]) on the five difficulty groups of the LRW test set.

Drop N Frames→ N=0 N=1 N=2 N=3 N=4 N=5

End-to-End AVR [2] 84.6 80.2 71.3 59.5 45.9 32.9
MS-TCN [3] 85.3 83.5 81.2 78.7 75.7 71.5
Ours (PD) 88.4 86.2 84.0 81.0 77.5 73.3
Ours (FD) 88.0 86.4 83.6 81.3 77.7 73.8

Table 3.5: The top-1 accuracy of different methods on LRW where N frames are randomly removed from
each testing sequence.

in each group is shown in Fig. 3.7. For comparison purposes, we also include the performance of [3]

and [2]. We can see that our models outperform the two baselines across all groups and the improvement

is more pronounced in the “Difficult” and “Very Difficult” groups.

Variable Lengths We further evaluate the temporal robustness of different models against video

sequences with variable lengths, i.e. N frames are randomly dropped from each testing sequence in LRW

dataset where N ranges from 0 to 5. As shown in Table 3.5, the performance of End-to-End AVR [2]

drops significantly as increasing frames are randomly removed from the testing sequences. In contrast,

MS-TCN [3] and our DC-TCN (both PD and FD) demonstrate better tolerance to such frame removals,

mainly due to the usage of variable length augmentation [3] during training. Besides, the accuracy of

our models (both PD and FD) constantly outperforms that of MS-TCN [3] no matter how the number of

frames to remove varies, which verifies the superior temporal robustness of our method.
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3.4 Conclusion

In this chapter, we study the problem of AVSR for isolated words. We start from an end-to-end visual

speech recognition model [31]. In contrast to performing VSR experiments using BLSTMs, we present

an AVSR model that performs classification using BGRUs. Next, our work reveals that replacing the

BGRU layers with TCN could achieve even better performance than recurrent layers. Given the fact

that the receptive fields of TCN module are limited, we further introduce a DC-TCN. Characterised

by the dense connections and the SE attention mechanism, the proposed DC-TCN could capture more

robust features at denser temporal scales and therefore improves the performance of the original TCN

architectures. We show that DC-TCN have surpassed the performance of all baseline methods on the

LRW dataset. Additionally, we simplify the training procedure and reduce training time from 3 weeks

to 1 week by using of TCN and cosine scheduler. Furthermore, we implement a series of architecture

changes to develop efficient lip-reading models. In particular, the frame encoder could be made more

lightweight by replacing the ResNet-18 with a ShuffleNet v2. We also replace the MS-TCN head with its

depthwise-separable variant, noted as DS-MS-TCN.

We study not only the architecture design but also data augmentation techniques at the temporal domain.

Specifically, we improve the generalisation capabilities to sequences of varying length by the use of

variable length augmentation. We further push the state-of-the-art performance on LRW by applying time

masking.

In future work we will investigate the performance of the proposed approach on other databases with more

extreme poses like LRS3 and on continuous visual speech recognition. It will be interesting to investigate

in future work how cross-modal distillation affects the performance of AVSR models. In the next chapter,

we will focus on the problem of sentence-level AVSR in in-the-wild scenarios.
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In the previous chapter, we presented deep AVSR models for isolated words, which achieved very impres-

sive results on in-the-wild lip-reading datasets. In this chapter, we present AVSR models for continuous

speech recognition, which is a more challenging and realistic task than isolated-word classification.

VSR, also known as lipreading, is the task of automatically recognising speech from video based only on

the lip movements. This is a field which attracted a lot of research attention in the past within the speech

recognition community [147, 148] but failed to meet the initial high expectations. As a consequence,

research interest declined and no further progress was made. The two main reasons why the first generation

of VSR models fell short are the following: 1) The lack of large transcribed audio-visual datasets resulted

in models which could only recognise a limited vocabulary and work only in a laboratory environment,

2) The use of hand-crafted visual features, which might not have been optimal for VSR applications,

prevented the development of high accuracy models. Recently, large audio-visual transcribed datasets,
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like LRS2 [19] and LRS3 [51], have become available which have allowed the development of large

vocabulary and robust models. In addition, advances in deep learning have made possible the use of

end-to-end models which learn to extract VSR-related features directly from the raw images. These

developments have led to a new generation of deep learning based VSR models which achieve much

higher accuracy than older models and also work in unseen real-life situations.

The constant improvement of VSR models is mainly fuelled by using increasingly larger transcribed

datasets, which are usually not publicly available, and the development of new models which work

well when trained with huge amounts of data. Some recent works [32, 34] use tens of thousands of

hours of non-publicly available training data in order to achieve state-of-the-art performance on standard

benchmarks. In contrast to this recent trend, we demonstrate that carefully designing a model is equally

important to using larger training sets. Our approach consists of 22three key ingredients: 1) hyper-

parameter optimisation of an existing architecture, 2) appropriate data augmentations, and 3) addition

of prediction-based auxiliary tasks to a VSR model. This leads to a great reduction in word error rate

(WER) and results in state-of-the-art performance in almost all benchmarks. This is achieved by using

only publicly available datasets which are two orders of magnitude smaller than the ones used in previous

works. We also show that combining multiple datasets further improves the performance which is in

line with the results reported in the literature. Hence, we argue that further progress in the field can be

achieved not only by increasing the size of the training data but also by designing suitable architectures.

The vast majority of existing works focus on improving the performance of English-only VSR models.

There are also few works which design models tailored to a specific language, like Mandarin [149, 53, 150].

In contrast to previous works, our approach is evaluated not only on English but also on Mandarin and

Spanish, which are the two other widely spoken languages, Italian, French and Portuguese. State-of-the-art

performance is achieved in all languages.

Specifically, in this chapter, we make the following contributions:

• We propose a novel method for visual speech recognition, which outperforms state-of-the-art

methods trained on publicly available data by a large margin.

• We do so by a VSR model with auxiliary tasks that jointly performs visual speech recognition and

prediction of audio and visual representations.
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• We demonstrate that the proposed VSR model performs well not only in English but also in other

languages, like Spanish, Mandarin, Italian, French and Portuguese.

• We show that enlarging the training sets, even by including unlabelled data with automatically

generated transcriptions or videos in other languages, results in improved performance. This

provides further evidence to the hypothesis that the recent improvements presented in the literature

are probably the result of larger training sets and not necessarily of better models.

• We extend the AVSR model presented in [24] to an end-to-end model and perform a comparison

between audio-only models trained with log-Mel filter-bank features and raw waveforms. Although

in clean conditions they both perform similarly, the raw audio model performs slightly better in

noisy conditions.

Our method outperforms state-of-the-art methods by a large margin for visual speech recognition in

multiple languages. In what follows we explain the details of our approach and the changes that we have

made to the training strategy and architecture which led to this highly improved performance.

4.1 Methodology

4.1.1 Our Approach

In contrast to previous works which improve the VSR performance by using increasingly larger training

sets, we focus on improving the performance by carefully designing a model without relying on additional

data. This is achieved by revising the training strategy and architecture of the state-of-the-art model

proposed in [151]. Firstly, we optimise hyperparmeters and improve the language model with the aim

of squeezing extra performance out of the model. Secondly, we introduce time-masking which is a

temporal augmentation method and is commonly used in ASR models. It significantly improves the VSR

performance by forcing the model to rely more on contextual information and as a consequence, it can

better disambiguate similar lip movements which correspond to different phonemes. Finally, we use a

VSR model with auxiliary tasks where the model jointly performs visual speech recognition and prediction

of audio and visual representations extracted from pre-trained VSR and ASR models (as described in

Sections 4.2.7 and 4.2.8, respectively). This prediction task provides additional supervisory signal and
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Table 4.1: The architecture of the front-end encoder of the VSR model. The filter shapes are denoted
by {Temporal Size × Spatial Size2,Channels} and {Spatial Size2,Channels} for 3D convolutional and
2D convolutional Layers , respectively. The sizes correspond to [Batch Size, Channels, Sequence
Length, Height, Width] and [Batch Size × Sequence Length, Channels, Height, Width], for 3D and 2D
convolutional layers, respectively. Tv denotes the number of input frames.

Component Name Layer Type Input Size Output Size

Stem1
Conv 3D, 5 × 72, 64 [B, 1, Tv, 88, 88] [B, 64, Tv, 44, 44]

3D Max Pooling, 1 × 32 [B, 64, Tv, 44, 44] [B, 64, Tv, 22, 22]

Reshape - [B, 64, Tv, 22, 22] [B×Tv, 64, 22, 22]

Residual Block2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 2D, 32, 64

Conv 2D, 32, 64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B×Tv, 64, 22, 22] [B×Tv, 64, 22, 22]

Residual Block3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 2D, 32, 128

Conv 2D, 32, 128

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B×Tv, 64, 22, 22] [B×Tv, 128, 11, 11]

Residual Block4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 2D, 32, 256

Conv 2D, 32, 256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B×Tv, 128, 11, 11] [B×Tv, 256, 6, 6]

Residual Block5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 2D, 32, 512

Conv 2D, 32, 512

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B×Tv, 256, 6, 6] [B×Tv, 512, 3, 3]

Aggregation 2D Global Average Pooling [B×Tv, 512, 3, 3] [B×Tv, 512, 1, 1]

Reshape - [B×Tv, 512, 1, 1] [B, 512, Tv]

forces the model to learn better visual representations. A diagram of the architecture of our model is

shown in Fig. 4.4c.

The performance of the our model can be seen in Tables 4.8 to 4.12. Due to the random nature of training

we train 10 models for each experiment and we report the mean and standard deviation of the WER

over the 10 runs. This is in contrast to previous works which report just a single value, most likely the

best WER, and no standard deviation, and it provides a more robust estimate of the actual performance.

However, in order to facilitate a fair comparison with other works, we also report the best WER of the 10

runs.

4.1.2 Architecture

The model consists of 4 modules, a front-end encoder (VSR encoder in Fig. 4.4c), a back-end encoder,

a hybrid CTC and transformer decoder and two predictors. In particular, the encoder receives as input



66 Chapter 4. Audio-Visual Speech Recognition for Continuous Speech

Table 4.2: The architecture of the front-end encoder of the ASR model. The filter shapes are denoted
by {Temporal Size,Channels} for 1D Convolutional Layers, respectively. The sizes correspond to [Batch
Size, Channels, Sequence Length]. Ta denotes the length of audio waveforms.

Component Name Layer Type Input Size Output Size

Stem1 Conv 1D, 80, 64 [B, 1, Ta] [B, 64, Ta//4]

Residual Block2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 1D, 3, 64

Conv 1D, 3, 64

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B, 64, Ta//4] [B, 64, Ta//4]

Residual Block3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 1D, 3, 128

Conv 1D, 3, 128

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B, 64, Ta//4] [B, 128, Ta//8]

Residual Block4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 1D, 3, 256

Conv 1D, 3, 256

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B, 128, Ta//8] [B, 256, Ta//16]

Residual Block5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Conv 1D, 3, 512

Conv 1D, 3, 512

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ × 2 [B, 256, Ta//16] [B, 512, Ta//32]

Aggregation 1D Average Pooling, Stride 20 [B, 512, Ta//32] [B, 512, Ta//640]

the raw images and maps them to visual speech representations which are fed to the back-end encoder.

This is followed by a CTC and transformer decoder which generates the predicted characters. Finally, the

features extracted from the middle position of the back-end encoder flow through two separate predictors

to predict visual and acoustic speech representations from pre-trained VSR and ASR models, respectively.

The front-end encoder consists of a 3D convolutional layer with a kernel size of 5 × 7 × 7 followed by a

ResNet-18 [152, 17]. Let B × T × H ×W be the input tensor to the visual front-end module, where B, T ,

H, and W correspond to batch size, number of frames, height and width, respectively. The visual features

at the top of the residual blocks are aggregated along the spatial dimension by a global average pooling

layer, resulting in a feature output of dimensions B×C × T , where C indicates the channel dimensionality.

The Swish activation functions is used in all layers. The detailed architecture can be seen in Table 4.1.

The back-end encoder starts with a positional embedding module, followed by a stack of 12 conformer

blocks. The positional embedding module is a linear layer, which projects the features from the output

of ResNet-18 to a 256-dimensional space. The transformed features are further injected with relative

position information [153]. In each conformer block, a feed-forward module, a self-attention module, a

convolution module, and a second feed-forward module are stacked in order. Specifically, the feed-forward

module is comprised of a linear layer, which projects the features to a higher 2048-dimensional space,
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followed by a Rectified Linear Unit (ReLU) activation function, a dropout layer with a probability of

0.1, and a second linear layer with output dimension of 256. Half-step residual connections are also used

in each feed-forward module. The self-attention module is capable of modeling global dependencies

among elements. The module maps the query and a set of key-value pairs through an attention map, which

focuses on different parts of the input. Instead of performing a single attention function, a multi-head

mechanism is leveraged with different linear projections to a lower 64-dimensional space. The attention

function is performed in parallel on each head and the outputs are concatenated into a 256-dimensional

space and once again projected into the final values. The convolutional module, which excels at capturing

local patterns efficiently, is composed of an 1D point-wise convolutional layer, Gated Linear Units

(GLU) [154], an 1D depth-wise convolutional layer, a batch normalisation layer, a swish activation layer,

a 1D point-wise convolutional layer, and a layer normalisation layer. The combination of self-attention

and convolution is capable of better capturing both local and global temporal information compared to the

standard transformer architecture [112].

The decoder is composed of an embedding module and a set of residual multi-head attention blocks. It

takes as input the encoded sequence and the prefixes of the target sequence. First, the prefixes from index

1 to l - 1 are projected to embedding vectors, where l is the target length index. The absolute positional

encoding [67] is also added to the embedding. Next, the embedding is fed to a stack of multi-head

attention blocks. Each block consists of a self-attention module, an encoder-decoder attention module and

a feed-forward module. Layer normalisation is added before each module. Specifically, the self-attention

module is slightly different from the one in the encoder where future positions at its attention matrix are

masked out, followed by an encoder-decoder attention, which helps the decoder to focus on the relevant

part of the input. This attention receives the features from the previous self-attention module as Q and the

features from the encoder as K and V (K = V). The features are further fed to a feed-forward module,

which is the same as the one used in the encoder. Finally, a layer normalisation and a linear layer are

added which predict the posterior distribution of the next generated token.

A linear layer with a softmax function, which maps the encoded features to the predicted character

sequence is also used on top of the back-end encoder. This layer is trained with the Connectionist Temporal

Classification (CTC) loss.

The predictor is a linear layer which takes as input the features at the middle block (6th) of the back-end
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encoder and predicts the corresponding audio/visual features from the pre-trained ASR/VSR models.

Separate predictors are employed for each prediction task. Both the input and output dimensions of the

linear layer are 256.

4.1.3 Prediction-based Auxiliary Tasks

The standard approach to visual speech recognition relies on end-to-end training which allows the entire

model to be optimised towards the desired target. This is an attractive property and has led to impressive

results but also results in significant challenges in training such a large model. One solution which has

been recently proposed is the use of auxiliary tasks in the form of additional losses applied to intermediate

layers of the model [155, 156, 157]. This acts as regularisation which helps the model learn better

representations and leads to better generalisation on test data.

Based on this observation we propose as an auxiliary task the prediction from intermediate layers of

audio and visual representations learned by pre-trained ASR and VSR models (see Fig. 4.4c). This is

inspired by the recent success of prediction tasks in self-supervised learning. In particular, good audio

representations can be learned by predicting speech features such as Log power spectrum (LPS) and

MFCCs or by using joint audio and visual supervision [158]. Similarly, visual speech representations can

be learned by predicting audio features [159]. Hence, the proposed auxiliary task provides additional

supervision to the intermediate layers of the model which in turns results in better visual representations

and improved performance. Mathematically, this is formulated as a regression problem where the goal is

to minimise the L1 distance between the predicted and pre-trained visual and audio features. This results

in the following loss term added to loss function:

LAUX = βa
⃦⃦⃦
ha( f l(xv)) − gl

a(xa)
⃦⃦⃦

1

+ βv
⃦⃦⃦
hv( f l(xv)) − gl

v(xv)
⃦⃦⃦

1 (4.1)

where xv and xa are the visual and audio input sequences, respectively, gv and ga are the pre-trained visual

and audio encoders, respectively. f is the subnetwork up to layer l whose intermediate representation is

used as input to the audio and visual predictor ha and hv, respectively. βa and βv are the coefficients for
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each loss term and ∥·∥1 is the ℓ1-norm.

The model performs VSR and at the same time attempts to predict audio and visual representations from

intermediate layers. Hence, the final loss is simply the addition of the main VSR loss and the auxiliary

loss as follows:

L = LVSR +LAUX (4.2)

LVSR = αLCTC + (1 − α)Latt (4.3)

where LVS R is the loss of the hybrid CTC/attention architecture used. LCTC is the CTC loss, Latt the loss

of the attention mechanism and α controls the relative weight of each loss term. Further details about the

losses can be found in section 4.1.4 in the Supplementary Information.

The significant impact of the auxiliary losses on performance can be seen in Table 4.5. Removing either

loss, i.e., either the first or second term from equation 4.1, leads to an increase in the mean WER for both

datasets. In case both losses are removed, i.e., no auxiliary loss is used, then the increase in the mean

WER is even greater. Finally, the removal of the two losses and time masking results in a significant

decrease in performance.

An ablation study on the effect of layer l where the auxiliary loss (equation 4.1) is attached is shown in

Fig. 4.1. Layer 6 was found to be the optimal level based on the performance on the validation set. All

results reported in all Tables are based on this configuration.

We investigate the effect of the layer l where the auxiliary loss (equation 4.1) is attached. The position of

layer varies from 0 to 12 at intervals of 2. Layer 6 was found to be the optimal level on the validation set

of LRS2. Results are presented in Figure 4.3.
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4.1.4 Loss Functions

To map input sequences x = [x1, ..., xT ] such as audio or visual streams to corresponding target characters

y = [y1, ..., yL], we consider a hybrid CTC/attention architecture [160] in this paper, where T , L are

the lengths of the input sequence and target character sequence, respectively. The CTC loss assumes

conditional independence between the output predictions and the estimated sequence posterior has the

form of PCTC(y|x) ≈
∏︁T

t=1 p(yt|x). The CTC loss from equation 4.3 is defined as follows:

LCTC = −logPCTC(y|x) (4.4)

An attention-based encoder-decoder model gets rid of this assumption by directly estimating the posterior

on the basis of the chain rule and has a form of Patt(y|x) ≈
∏︁L

l=1 p(yl|y<l, x). In this case the Latt from

equation is:

Latt = −logPatt(y|x) (4.5)

The objective function of speech recognition is performed by a linear combination of the CTC loss and a

cross-entropy loss as shown in equation 4.3. The α value used in this work is 0.1.

A grid search was performed for the parameters βa and βv used in the auxiliary loss (equation 4.1). The

values that resulted in the best performance in the validation set of the LRS2 dataset are the following: βa

= 0.4 and βv = 0.4. These values are used for all experiments.

4.1.5 Using Additional Training Data

Using larger and larger training sets is a recent trend in the literature in order to reduce the WER. In order

to investigate the impact of the amount of training data we train models on varying amounts of data. We

start by training models using only the training set of each database (ninth row of Table 4.8 and sixth

row of Table 4.9). It is not possible to train a model from scratch on the LRS2 and LRS3 datasets so we

use curriculum learning. This means that we first use only short utterances and as training progresses

we keep adding longer ones. Further details on curriculum learning can be found in section 4.1.6 in the

Supplementary Information. Then we use a model trained for recognising 500 English words [115] on the



4.1. Methodology 71

ce-b0 ce-b2 ce-b4 ce-b6 ce-b8 ce-b10 ce-b12

25

35

45

W
ER

 (%
)

Figure 4.1: Performance of visual speech recognition on LRS2 test set based on features extracted from
different layers. “ce-b0” to “ce-b12” refer to the layers from each conformer block from bottom to top.

LRW dataset for initialisation and we fine-tune it on the corresponding training sets of the LRS2 or LRS3

datasets (tenth row of Table 4.8 and seventh row of Table 4.9). Finally, we use the models trained on LRW

+ LRS3 and LRW + LRS2 as initialisation and fine-tune them further on LRS2 and LRS3, respectively

(eleventh row of Table 4.8 and eigth row of Table 4.9). It is clear as we use more datasets for training the

performance keeps improving. This is also the case for Spanish and Mandarin (seventh row of Table 4.10

and fourth row of Table 4.12) even when models trained on English are used for initialisation. However,

the reduction in WER is smaller than in English probably due to language mismatch.

Finally, we use a subset of the AVspeech dataset as additional training data together with the automatically

generated English transcriptions. Again, the WER is reduced in all languages (twelfth row of Table 4.8,

ninth row of Table 4.9, last row of Table 4.10 and Table 4.12), despite using transcriptions which contain

errors, with the smallest reduction observed in Mandarin. This is not surprising since Mandarin is much

less similar to English than Spanish. These results are in line with the hypothesis that the reduction in the

WER reported in recent works is mainly due to the larger datasets used for training.

4.1.6 Curriculum Learning

The end-to-end model was trained from scratch, resulting in poor performance on LRS2 and LRS3. This

is likely due to the vast amount of very long utterances featured in LRS2 and LRS3, which makes learning

from scratch especially challenging. We have found that the issue can be resolved by progressively

training the end-to-end model, starting with short utterances and then using longer ones during training.

This approach is commonly called curriculum learning (CL). In this paper, the model is initially trained

with a subset of labelled training data, consisting of videos shorter than 100 frames. Then this model is
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Table 4.3: Results of curriculum learning experiments on the LRS2 dataset.

Video length in frames WER on the validation set WER on the test set

Baseline VSR model

0-100 65.1±0.2 52.7±0.8

0-150 54.0±0.7 44.2±0.5

0-300 46.0±0.6 36.3±0.4

0-450 43.6±0.5 34.3±0.5

0-600 42.4±0.4 33.7±0.4

VSR model with auxiliary workers

0-100 51.9±0.3 41.5±0.5

0-150 46.2±0.4 36.1±0.3

0-300 43.3±0.2 34.4±0.2

0-450 42.6±0.3 34.6±0.5

0-600 42.0±0.3 33.4±0.3

used for initialisation when using utterances with up to 150 frames for training. This process is repeated

for 3 more rounds where the length of training sequences is 300, 450, and 600 frames, respectively. As

opposed to a model trained from scratch, this initialisation allows for faster training and more predictable

results. In that way, we adopt this curriculum-based learning strategy, resulting in a significantly more

efficient training process. As a result, as shown in the ninth row of Table 4.8 , the strategy reaches a WER

of 33.65 ± 0.35, which pushes the state-of-the-art performance on LRS2, using the LRS2 dataset only.

Similar pattern on LRS3 can also be found in the eighth row of Table 4.9. Results for each round of

curriculum learning can be seen in Tables 4.3 and 4.4.

4.1.7 Time Masking

Data augmentation works by synthesising additional distorted training data with the goal of reducing

over-fitting. In visual speech recognition, most existing works employ image transformations such as

random cropping and horizontal flipping [161, 151, 24]. These spatial augmentations are helpful but they

do not take into account the temporal nature of visual speech. Only few works exist which apply temporal

augmentations like deleting or duplicating frames [16] or variable length augmentation [115].

In this work we propose the use of time masking which is commonly used in training ASR models [162].
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Table 4.4: Results of curriculum learning experiments on the LRS3 dataset.

Video length in frames WER on the test set

Baseline VSR model

0-100 75.2±0.4

0-150 53.3±0.7

0-300 43.0±0.4

0-450 39.9±0.6

0-600 38.7±0.5

VSR model with auxiliary workers

0-100 57.7±0.4

0-150 46.8±0.1

0-300 40.8±0.6

0-450 39.7±0.4

0-600 38.6±0.4

Table 4.5: Ablation study on the LRS2 dataset and LRS3 dataset. Models are trained on LRW+LRS2 and
LRW+LRS3, respectively.

Method WER on LRS2 WER on LRS3

Our model 29.5±0.4 35.8±0.5

- Audio auxiliary task 31.4±0.3 36.6±0.3

- Visual auxiliary task 30.6±0.5 36.9±0.5

- Audio auxiliary task, visual auxiliary task 33.2±0.5 37.8±0.6

- Time masking 32.6±0.5 38.5±0.5

- Audio auxiliary task, visual auxiliary task, time masking 35.0±0.5 39.1±0.4

It works by randomly masking n consecutive frames by replacing them with the mean sequence frame.

This allows the model to more effectively use contextual information and can better disambiguate similar

lip movements which correspond to different phonemes. It also makes the model more robust to short

missing segments. Given that there is large variance in the video lengths, especially on the LRS2 and LRS3

datasets, the number of masks used is proportional to the length of the training sequence. Specifically, we

use one mask per second, and for each mask, we randomly mask up to 40% of frames, where the masked

segments is chosen using a uniform distribution. The impact of time masking is shown in the ablation

study on the LRS2 and LRS3 datasets shown in Table 4.5. Training a model without time masking results
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Figure 4.2: End-to-end audio-visual speech recognition architecture. The inputs are pixels and raw audio
waveforms.

in a significant increase in the mean WER when compared to the full model.

4.1.8 Audio-Visual Fusion

We present a hybrid CTC/Attention model based on a ResNet-18 and Convolution-augmented transformer

(Conformer), that can be trained in an end-to-end manner. In particular, features directly from the audio

and visual encoders given raw pixels and audio waveforms are fed to a MLP for fusion. As shown in

Figure 4.2, the acoustic and visual features from the back-end modules are then concatenated and projected

to dk-dimensional space by an MLP. The MLP is composed of a linear layer with an output size of 4 × dk

followed by a batch normalization layer, ReLU, and a final linear layer with an output dimension dk.

4.2 Experimental Setup

4.2.1 Performance Metrics

Word Error Rate (WER) is the most common metric used in speech recognition, which measures how close

the predicted word sequence is to the target word sequence. Assuming S is the number of substitutions, D
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Table 4.6: Investigation of the impact of hyperparameters and Language Model (LM) choices on the LRS2
dataset and LRS3 dataset.

Method WER on LRS2 WER on LRS3

CM-seq2seq [151] - Baseline 37.8±0.5 44.9±0.8

+ Hyperparameter Optimisation 35.9±0.5 40.6±0.8

+ Improved LM 35.0±0.5 39.1±0.4

is the number of deletions, I is the number of insertions needed to get from the predicted to the target

sequence and N is the number of words in the target sequence, then the metric can be defined as follows:

WER =
S + D + I

N
(4.6)

Similarly to WER, we can define the character error rate (CER) which measures how close the predicted

and target character sequences are. In this case, S, D, and I are computed at the character level and N is

the total number of characters.

4.2.2 Preprocessing

We use the RetinaFace [135] face detector and the Face Alignment Network (FAN) [136] to detect 68 facial

landmarks. Then, the faces are registered to a neutral reference frame using a similarity transformation to

remove translation and scaling variations. A bounding box of 96 × 96, centered on the mouth center, is

used to crop the mouth Region Of Interest (ROI). The cropped patch is further converted to gray-scale and

normalised with respect to the overall mean and variance of the training set.

4.2.3 Hyper-Parameter Optimisation

Hyper-parameter optimisation aims at improving the performance of a model by fine-tuning the values of

parameters which are used to control the training process or the model architecture. Some of the most

common hyper-parameters which are usually optimised are the following: initial learning rate, learning

rate decay parameters, number of layers, size of layers, dropout rate and the loss function weights which

are used to combine the different loss terms. Additional hyper-parameters related to conformers are the

number and size of the self attention heads. We performed hyper-parameter optimisation on the LRS2
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Figure 4.3: Performance of visual speech recognition on LRS2 validation set based on features extracted
from different layers. “ce-b0” to “ce-b12” refer to the layers from each conformer block from bottom to
top.

Table 4.7: Investigation of the impact of hyperparameters and Language Model (LM) choices on the
validation set of LRS2 dataset.

Method WER

CM-seq2seq [151] - Baseline 47.7±0.5

+ Hyperparameter Optimisation 45.6±0.4

+ Improved LM 44.1±0.5

dataset by attempting to reduce the WER on the validation set. Our conclusion was that the parameters

used in the baseline model [151] were already optimal so no further improvement was observed.

The next step was to optimise other hyper-parameters which might not have been exhaustively optimised,

like batch size related parameters. Each hyper-parameter is optimised independently based on the

WER on the validation set of LRS2. We use the same hyper-parameters for all experiments. The main

hyperparameter that was found to have a significant impact on performance was the batch size. We

observed that increasing the batch size from 8 to 16 led to reduced WER on the validation set of the LRS2

dataset (see Table 4.7). There is also one more hyper-parameter which controls the batch size based on

the length of the sequences. In other words, if some sequences are too long then the batch is halved. We

found that increasing this threshold from 150 to 220 frames also improved the performance. We could not

increase these two hyper-parameters even further due to GPU memory constraints but it is likely that the

WER will be reduced even more.
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4.2.4 Improving Language Models

A language model (LM) determines the probability of a given sequence of characters. It is used during

decoding and favours sequences which are more likely to occur. In order to increase the capacity of the

LM we use multiple text corpora for training. We also increase the number of sequences considered

during decoding (beam size is set to 40). The impact of these changes can be seen in Table 4.6 where the

WER is reduced for both English datasets.

The score from the language model (SLM) is incorporated in decoding as shown in Eq. 4.7.

S = λS CTC + (1 − λ)S att + βS LM (4.7)

where S CTC and S att are the scores of the CTC and decoder branch, respectively. λ and β correspond to

the CTC and language models score weights.

4.2.5 Language Models

We train six monolingual transformer-based language model [163] for 50 epochs. The English language

model is trained by combining the training sets of LibriSpeech (960 h) [164], pre-training and training sets

of LRS2 [19] and LRS3 [52], TED-LIUM 3 [165], Voxforge (English) and Common Voice (English) [166],

with a total of 166 million characters. The Mandarin language model is trained by combining the

CMLR [53] and news2016zh, with a total of 153 million characters. The Spanish language model

is trained by combining the Spanish corpus from Multilingual TEDx [55], Common Voice [166] and

Multilingual LibriSpeech [167], with a total of 192 million characters. The Italian language model

is trained by combining the Italian corpus from Multilingual TEDx [55], Common Voice [166] and

Multilingual LibriSpeech [167], with a total of 252 million characters. The Portuguese language model

is trained by combining the Portuguese corpus from Multilingual TEDx [55], Common Voice [166]

and Multilingual LibriSpeech [167], with a total of 85 million characters. The French language model

is trained by combining the French corpus from Multilingual TEDx [55], Common Voice [166] and

Multilingual LibriSpeech [167], with a total of 945 million characters. In our work, we set λ and β from

equation 4.1 to 0.1 and {English: 0.6, Mandarin: 0.3, Spanish: 0.4, Italian: 0.5, Portuguese: 0.3, French:

0.3}, respectively. The impact of the improved English language model on the validation set of the LRS2
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dataset can be seen on Table 4.7.

4.2.6 Implementation

Our experiments were implemented using an open-source toolkit, ESPNet [168]. We train the models with

the Adam optimizer [169] with β1 = 0.9, β2 = 0.98 and ϵ = 10−9. The learning rate is increased linearly

in the first 25 000 steps, yielding a peak learning rate of 0.0004 and thereafter decreases proportionally to

the inverse square root of the step number. The network is trained for 50 epochs with a batch size of 16.

We use the model averaged over the last 10 checkpoints for evaluation. Details regarding the network

architecture are provided in section 4.1.2 in the Supplementary Information.

4.2.7 Baseline VSR Model

The baseline VSR model that we extend in this work is based on [151]. The model consists of a 3D

convolutional layer with a receptive field of 5 frames, followed by a 2D ResNet-18 (Fig. 4.4e), a 12-layer

Conformer model [112] and a transformer decoder [67] as shown in Fig. 4.4b. The model is trained

end-to-end using a combination of the Connectionist Temporal Classification (CTC) loss with an attention

mechanism. Data augmentation is also used during training in the form of random cropping and image

flipping (applied to all frames in the same sequence). This model achieves the state-of-the-art VSR

performance on the LRS2 and LRS3 datasets, when only publicly available data are used for training.

4.2.8 Baseline ASR Model

The baseline ASR model that we use is based on [151]. The model consists of an 1D ResNet-18 (Fig. 4.4d),

a 12-layer Conformer model and a transformer decoder as shown in Fig. 4.4a. This model also follows

the hybrid CTC/Attention architecture and is trained end-to-end. Time-masking is also used as data

augmentation during training. This is at the moment the state-of-the-art ASR model on the LRS2 and

LRS3 datasets.

4.3 Results

We present a model that takes a sequence of images as input and predicts the spoken words in that sequence.

We show that the proposed method outperforms state-of-the-art methods trained on publicly available data
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Figure 4.4: (a) Baseline ASR model, (b) Baseline VSR model, (c) Proposed model with prediction-based
auxilliary tasks. The frame rate of extracted visual features and audio features is 25. (d) Architecture of
ASR encoder. (e) Architecture of VSR encoder.

by a large margin. It also outperforms some methods which have been trained on non-publicly available

datasets (which are an order of magnitude larger than the datasets we use in this work). Finally, we

also show that our method does not work well only for English but it also significantly outperforms the

state-of-the-art VSR methods for Mandarin, Spanish, Italian, French and Portuguese.

4.3.1 Results on LRS2

Results on LRS2, which is an English audio-visual dataset, are reported in Table 4.8. Our model

outperforms all existing works by a large margin even when it is trained on smaller amounts of training

data. In particular, we outperform the previous state-of-the-art [151], in terms of the best WER achieved,

by 5 %. This is despite the fact that [151] is trained on a larger training set. When we use the same

training set size as [151] our model results in a 9.2 % improvement. Finally, when we use additional

training data an even larger improvement of 12.4 % is observed. Similarly, our approach results in a

22.8 % absolute improvement in the best WER over [51] which uses a training set with similar size to

ours and also includes non-publicly available data.

4.3.2 Results on LRS3

Results on LRS3, which is an English audio-visual dataset, are presented in Table 4.9. Also in this case,

our proposed approach significantly outperforms all existing works which are trained using publicly

available datasets. In particular, our method leads to an 8.2 % absolute improvement, in terms of the best
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Table 4.8: Results on the LRS2 dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

Using Publicly Available Datasets

MV-WAS [19] - LRS2 223 - 70.4

CTC/Att. [24] LRW LRS2 380 - 63.5

KD+CTC [59] VoxCeleb2clean+LRS3 LRS2 995 - 51.3

KD-seq2seq [170] LRW+LRS3 LRS2 818 - 49.2

TDNN [171] - LRS2 223 - 48.9

CM-seq2seq [151] LRW LRS2 380 - 37.9

Ours - LRS2 223 33.6±0.5 32.9

Ours LRW LRS2 380 29.5±0.4 28.7

Ours LRW+LRS3 LRS2 818 27.6±0.2 27.3

Ours LRW+LRS3+AVSpeech LRS2 1 459 25.8±0.4 25.5

Using Non-Publicly Available Datasets

TM-seq2seq [51] MVLRS+LRS3 LRS2 1 391 - 48.3

Table 4.9: Results on the LRS3 dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

Using Publicly Available Datasets

KD+CTC [59] VoxCeleb2clean LRS3 772 - 59.8

KD-seq2seq [170] LRW+LRS2 LRS3 818 - 59.0

CM-seq2seq [151] LRW LRS3 595 - 43.3

Ours - LRS3 438 38.6±0.4 37.9

Ours LRW LRS3 595 35.8±0.5 35.1

Ours LRW+LRS2 LRS3 818 34.9±0.2 34.7

Ours LRW+LRS2+AVSpeech LRS3 1 459 32.1±0.3 31.5

Using Non-Publicly Available Datasets

TM-seq2seq [51] MVLRS+LRS2 LRS3 1 391 - 58.9

V2P [32] - LSVSR 3 886 - 55.1

RNN-T [33] - YT-31k 31 000 - 33.6

ViT3D-TM [34] - YT-90k 90 000 - 25.9

ViT3D-CM [172] - YT-90k 90 000 - 19.3
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Table 4.10: Results on the CMLR dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

LipCH-Net [149] - CMLR 61 34.0

CSSMCM [53] - CMLR 61 - 32.5

LIBS [173] - CMLR 61 - 31.3

CTCH [150] - CMLR 61 - 22.0

Ours - CMLR 61 9.1±0.05 9.1

Ours LRW+LRS2+LRS3 CMLR 879 8.2±0.06 8.1

Ours LRW+LRS2+LRS3+AVSpeech CMLR 1 520 8.1±0.05 8.0

WER, over the state-of-the-art [151] when the same training data are used. As expected, a smaller absolute

improvement of 5.4 % is reported when a smaller training set is used. In case of additional training data

being available, a larger absolute improvement of 11.8 % is achieved.

There are also some works which rely on very large non-publicly available datasets for training. As a

consequence, it is not clear if the reported improvement in WER is due to a better model or simply to

the large amount of training data. Our approach outperforms all works which use up to 21 times more

training data. More specifically, our best model, trained on 1 453 hours of video, leads to a 2.1 % absolute

improvement over [33] which uses 31 000 hours of training data. However, it performs worse than [34]

that presents a model trained on 90 000 hours, which is 62 times more training data than the publicly

available training data our model is trained on.

4.3.3 Results on CMLR

Results on the CMLR dataset, which is a Mandarin audio-visual dataset, are shown in Table 4.10. We

report performance in terms of character error rate (CER) instead of WER because Chinese characters

are not separated by spaces. Our approach results in a significant reduction in the CER over all existing

works. We achieve an absolute improvement of 12.9 % over the state-of-the-art [150]. The WER can be

further reduced by 1.1 % by first pre-training our model on English and then fine-tuning it on the CMLR

training set.



82 Chapter 4. Audio-Visual Speech Recognition for Continuous Speech

Table 4.11: Results on the Multilingual TEDx-Spanish (MTes) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW CMes+MTes 244 66.4±0.8 65.2

Ours LRW CMes+MTes 244 60.8±0.8 60.3

Ours LRW+LRS2+LRS3 CMes+MTes 905 56.9±0.5 56.5

Ours LRW+LRS2+LRS3+AVSpeech CMes+MTes 1 546 56.6±0.3 56.3

Table 4.12: Results on the CMU-MOSEAS-Spanish (CMes) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW CMes+MTes 244 58.9±0.8 58.1

Ours LRW CMes+MTes 244 51.5±0.8 50.4

Ours LRW+LRS2+LRS3 CMes+MTes 905 47.4±0.2 47.2

Ours LRW+LRS2+LRS3+AVSpeech CMes+MTes 1 546 44.6±0.6 43.9

4.3.4 Results on Spanish

Results on the Multilingual TEDx-Spanish dataset are shown in Table 4.11. We observe that our proposed

approach results in a 5.6 % absolute reduction in the WER. A further reduction of 4.2 % can be achieved

by using additional training data.

Results on the CMU-MOSEAS-Spanish dataset, which is an audio-visual Spanish dataset, are shown in

Table 4.12. Given that this is a small dataset it is not possible to train an accurate model without using

additional data. For this purpose, we first pre-train the model on English datasets and then fine-tune it on

the training sets of CMU-MOSEAS and TEDx datasets using the Spanish videos only. Since this is a new

dataset and there are no results from prior works, we have trained the end-to-end model presented in [151]

to serve as the baseline. We observe that our proposed approach results in a 7.7 % absolute reduction in

the WER. A further reduction of 6.5 % can be achieved by using additional training data.

4.3.5 Results on Italian

We manually clean the Italian corpus on Multilingual TEDx to exclude videos without visible speakers,

resulting in a total of 26387 videos (45.8 hours) for training, 252 videos (0.4 hours) for validation and 309
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Table 4.13: Results on the Multilingual TEDx-Italian (MTit) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW MTit 203 71.5±0.4 70.9

Ours LRW MTit 203 65.9±0.5 65.2

Ours LRW+LRS2+LRS3 MTit 864 58.7±0.3 58.2

Ours LRW+LRS2+LRS3+AVSpeech MTit 1 505 57.9±0.7 57.4

Table 4.14: Results on the Multilingual TEDx-Portuguese (MTpt) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW CMpt+MTpt 256 70.2±0.3 69.7

Ours LRW CMpt+MTpt 256 66.0±0.5 65.3

Ours LRW+LRS2+LRS3 CMpt+MTpt 917 62.4±0.4 62.0

Ours LRW+LRS2+LRS3+AVSpeech CMpt+MTpt 1 558 62.1±0.6 61.5

Table 4.15: Results on the CMU-MOSEAS-Portuguese (CMpt) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW CMpt+MTpt 256 65.7±0.5 65.4

Ours LRW CMpt+MTpt 256 57.2±0.7 56.6

Ours LRW+LRS2+LRS3 CMpt+MTpt 917 53.1±0.2 52.8

Ours LRW+LRS2+LRS3+AVSpeech CMpt+MTpt 1 558 51.6±0.2 51.4

videos (0.5 hours) for testing. Results on the Multilingual TEDx-Italian dataset are shown in Table 4.13.

Our proposed approach results in an absolute drop of 5.6 % in the WER. A further reduction of 8 % can

be achieved by using additional training data.

4.3.6 Results on Portuguese

We manually cleaned the Portuguese corpus on Multilingual TEDx to exclude videos where the speaker

is not visible, resulting in a total of 52 395 videos (81.3 hours) for training, 532 videos (0.7 hours) for

validation and 401 videos (0.6 hours) for testing. Results on the Multilingual TEDx-Portuguese dataset

are shown in Table 4.14. We observe that our proposed approach results in a 4.2 % absolute reduction in
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Table 4.16: Results on the Multilingual TEDx-French (MTfr) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW CMfr+MTfr 257 84.0±0.7 83.2

Ours LRW CMfr+MTfr 257 74.6±0.6 73.4

Ours LRW+LRS2+LRS3 CMfr+MTfr 918 67.0±0.3 66.7

Ours LRW+LRS2+LRS3+AVSpeech CMfr+MTfr 1 559 67.0±0.6 66.2

Table 4.17: Results on the CMU-MOSEAS-French (CMfr) dataset.

Method Pre-training Set Training Set
Training

Sets Total
Size (hours)

Mean±Std. Best

CM-seq2seq [151] LRW CMfr+MTfr 257 79.9±0.4 79.6

Ours LRW CMfr+MTfr 257 68.4±0.5 67.5

Ours LRW+LRS2+LRS3 CMfr+MTfr 918 60.1±0.3 59.5

Ours LRW+LRS2+LRS3+AVSpeech CMfr+MTfr 1 559 59.1±0.5 58.3

the WER. A further reduction of 3.9 % can be achieved by using additional training data.

We divide the Portuguese corpus on CMU-MOSEAS [54] into 10 658 videos (17.8 hours) for training and

412 videos (0.7 hours) for testing, respectively. Results on the CMU-MOSEAS-Portuguese dataset are

shown in Table 4.15. The proposed approach results in a 8.5 % absolute reduction in the WER. Using

additional training data leads to a further reduction of 5.6 %.

4.3.7 Results on French

We manually cleaned the French corpus on Multilingual TEDx to exclude videos where the speaker is not

visible, resulting in a total of 58 809 videos (84.9 hours) for training, 333 videos (0.4 hours) for validation

and 235 videos (0.3 hours) for testing. Results on the Multilingual TEDx-French dataset are shown in

Table 4.16. The proposed approach results in a 9.4 % absolute reduction in the WER. A further reduction

of 7.6 % can be achieved by using additional training data.

We divide the French corpus on CMU-MOSEAS [54] into 8 880 videos (15.3 hours) for training and 513

videos (0.8 hours) for testing, respectively. Results on the CMU-MOSEAS-French dataset are shown in

Table 4.17. We observe that our proposed approach results in a 11.5 % absolute reduction in the WER.
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Figure 4.5: Word Error Rate (WER) as a function of the noise level. A: End-to-End audio model. V:
End-to-End visual model, AV: End-to-End audio-visual model. log-Mel filter-bank: A conformer model
trained with log-Mel filter-bank features.

Furthermore, as expected, the performance is improved by a large margin of 9.3 % when additional

training data is included.

4.3.8 Comparison between Mean and Best WER/CER

In all results shown in Tables 4.8 to 4.12 we report both the mean and the best performance over 10 runs.

We observe that the mean WER, which is more representative of the actual performance, is up to 0.8 %

worse than the best WER. The only exception is the CMLR dataset (Table 4.10) where the mean and best

CER are practically the same, mainly due to the large test set. This difference between the mean and best

WER is something which should be taken into account when comparing different models, especially when

the models are tested on relatively small test sets and the results are too close.

4.3.9 Audio-Visual Experiments

As shown in Table 4.18, the E2E audio-only model using audio waveforms for training achieves a WER

of 4.3 %, resulting in an absolute improvement of 2.4 %. over the current state-of-the-art. For comparison

purposes, we also run an experiment using 80-dimension log-Mel filter-bank features following [24, 160].

Similarly to the WavAugment [175], we augment the log-Mel filter-bank features via SpecAugment [162].

By replacing the raw audio features with the log-Mel filter-bank features, we observe the same performance,

WER 4.3 %, which indicates deep acoustic speech representations based on the proposed temporal network
† We used a part of unlabelled AVSpeech dataset with machine-generated transcriptions for training. Details can be found in

supplementary materials
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Method Training Data (Hours) WER

Audio-only (↓)

TM-seq2seq [51] MVLRS (730)+LRS2&3v0.4 (632) 9.7

CTC/Attention [24] LRS2 (224) 8.3

CTC/Attention [174] LibriSpeech (960)+LRS2 (224) 8.2

TDNN [171] LRS2 (224) 6.7

Ours (filter-bank) LRS2 (224) 4.3

Ours (raw A) LRS2 (224) 4.3

Ours (raw A) LRW (157)+LRS2 (224) 3.9

Audio-visual (↓)

TM-seq2seq [51] MVLRS (730)+LRS2&3v0.4 (632) 8.5

CTC/Attention [24] LRW (157)+LRS2 (224) 7.0

TDNN [171] LRS2 (224) 5.9

Ours (raw A + V) LRS2 (224) 4.2

Ours (raw A + V) LRW (157)+LRS2 (224) 3.7

Table 4.18: Word Error Rate (WER) of the audio-only and audio-visual models on LRS2.

can be directly learnt from audio waveforms. To better investigate their differences, we conduct noisy

experiments varying different levels of babble noise. The results are shown in Figure 4.5. It is interesting

to observe that the performance of the raw audio model slightly outperforms the log-Mel filter-bank based

over varying levels of babble noise with a maximum absolute margin of 7.5 % at -5 dB. This indicates

deep speech representations are more robust to noise than the log-Mel filter-bank features. We further

initialise the audio encoder with a model pre-trained on LRW then the WER drops to 3.9 %.

It is evident that the audio-visual model which directly learns from audio waveforms and raw pixels

leads to a small improvement over the audio-only models. We also run audio-only, visual-only, and

audio-visual experiments varying the SNR levels of babble noise. The results are shown in Fig 4.5.

Note that both audio-only and audio-visual models are augmented with noise injection. It is clear that

the audio-visual model achieves better performance than the audio-only model. The gap between raw

audio-only and audio-visual models becomes larger by the presence of strong noise. This demonstrates

that the audio-visual model is particularly beneficial when the audio modality is heavily corrupted by

background noise.
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4.4 Conclusion

In this chapter, we study the audio-visual speech recognition models for continuous speech. We presented

a hybrid CTC/Attention architecture and performed end-to-end training. The architecture uses a CTC loss

in combination with an attention-based model in order to force monotonic alignments and at the same time

get rid of the conditional independence assumption. Furthermore, we present our approach for VSR and

demonstrated that state-of-the-art performance can be achieved not only by using larger datasets, which

is the current trend in the literature, but also by carefully designing a model. We demonstrate that the

AVSR model significantly outperforms the ASR model, especially at high levels of noise. Additionally,

we show that the model trained using raw audio can achieve better performance than the model trained

using log-Mel filter-bank features by leveraging the proposed ResNet-18 1D backbone. Our work opens a

new path for in-the-wild audio-visual speech recognition and demonstrates the potential of learning from

raw streams, which is in contrast to the log-Mel filter-bank features used in modern ASR systems. We

hope that our work can function as the foundation for future research. In the next chapter, we will study

the problem of self-supervised cross-modal learning.
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In Chapter 3 and 4, we have discussed the problem of AVSR for both isolated words and continuous

speech. Apart from audio-visual fusion in audio-visual learning, the correlation nature in audio-visual

pairs makes it possible to supervise each other to learn powerful representations. In this chapter, we study

the problem of self-supervised audio-visual learning.

Self-supervised learning aims to leverage unlabelled data by extracting the training objective directly

from the input itself, in an attempt to model meaningful representations of the proposed modality which

capture its content and structure. In works adopting this methodology, this task is usually known as the

“pretext task” and this initial training procedure is known as the “pre-training” stage. After pre-training,

the network is trained on the “downstream task”, which generally involves a smaller set of manually

labelled data.

Pretext tasks for visual self-supervision include image colourisation [176], jigsaw puzzle solving [177], as

88
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well as combinations of these and other tasks [178]. Self-supervised learning has also been explored in the

speech community through works such as Contrastive Predicting Coding (CPC) [179] and wav2vec [180],

which predict/discriminate future segments of audio samples; LIM (Local Info Max) [181], which

maximises mutual information for the same speaker; and, more recently, PASE (Problem Agnostic Speech

Encoder) [182, 183], which predicts established audio features such as STFT and MFCC.

Self-supervision has been adopted in the audio-visual domain. Recent approaches include audio-visual

fusion [184, 185], clustering [186], and distillation [187]; cross-modal discrimination [188]; and cyclic

translation between modalities [189]. Shukla et al. [190] focus on learning audio representations by

facial reconstruction from waveform speech. Conversely, [191] predict frequency-based summaries of

ambient sound from video, while other recent works apply audio-visual synchronisation [192, 193, 194]

to learn visual embeddings. A task that can benefit from self-supervised learning is lip-reading. Current

state-of-the-art lip-reading models rely on annotating hundreds of hours of visual speech data [33], which

is costly. To solve this issue, Afouras et al. [195] propose using a pre-trained ASR model to produce

machine-generated captions for unsupervised pre-training. This provides automatically labelled data but

still relies on an ASR model trained on large amounts of labelled data.

In this chapter, we aim to leverage the vast amount of available audio-visual speech data to learn generic

visual speech features and improve state-of-the-art lip-reading models by predicting audio features from

visual speech. The targeted audio features are extracted from waveform audio without the need for

additional labels using an established speech encoder (PASE+ [183]). Using the proposed approach, the

learnt visual features are explicitly guided by audio which contains rich information about speech. This in

turn can lead to learning visual features which are more suitable for speech recognition. After this training

procedure, we apply our model for lip-reading on a transcribed visual speech dataset. For both tasks, we

employ a 2D ResNet-18 with a 3D front-end layer, as proposed in [31], followed by the recently proposed

conformer encoder [112].

Our research contributions are as follows: 1) We present LiRA, which learns powerful visual speech

representations by predicting acoustic features from raw video taken from large audio-visual datasets.

2) We demonstrate that LiRA provides a good initialisation for fine-tuning lip-reading models which

consistently outperforms training from scratch, and that this method is particularly beneficial for smaller

labelled datasets. 3) We show that LiRA outperforms previous self-supervised methods for word-level
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Figure 5.1: The high-level architecture of our model and our methodology for audio-visual self-supervised
training.

lip-reading, achieving an accuracy of 88.1% on LRW by pre-training on unlabelled data. 4) Finally, we

leverage our self-supervised approach towards sentence-level lip-reading, and find that our fine-tuned

model achieves state-of-the-art performance for LRS2.

5.1 Methodology

5.1.1 Pretext task

LiRA predicts PASE+ features from raw video and is composed of three distinct components. The

first is the spatial encoder, which is a traditional 2D ResNet-18 preceded by a 3D front-end layer. The

second component is the temporal encoder – the conformer – which receives as input the frame-wise

features produced by the spatial encoder and returns a set of features of the same size. The conformer

encoder combines traditional attention-based transformer blocks, which excel at capturing global temporal

dependencies, with convolutional layers, which model local patterns efficiently [112]. The final component

is the projection head (based on the MLP – Multi-Layer Perceptron – workers presented in [182]), which

projects these representations into the predicted PASE+ features. To train the model, we apply an L1 loss

between the generated embeddings and the features extracted from the pre-trained (frozen) PASE+ model,

as shown in Figure 5.1. We would also like to mention that we have also experimented with predicting
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MFCC features but the results were worse than predicting PASE+ features.

5.1.2 Downstream Task

To evaluate the visual speech representations, we run three variations of end-to-end lip-reading experiments.

The training procedure is illustrated in Figure 5.2. LiRA-Supervised models are trained from scratch

based on the same encoder as in the self-supervised training [196]. This serves as our baseline model

since it is trained only with the labelled training data. LiRA-Frozen models are trained using LiRA

features from the pre-trained encoder. This allows us to evaluate the visual representations learned during

self-supervised learning. Finally, LiRA-FineTuned models use the same model as LiRA-Supervised but

are initialised with the pre-trained encoder weights from the pretext task. By using this configuration,

we can evaluate the model initialisation capabilities of the proposed self-supervised learning approach.

For each of these methods, we adopt a separate model for each lip-reading task - six models in total. For

word-level lip-reading, we use a Multi-Scale Temporal Convolutional Network (MS-TCN) [3] on top of

the encoder, followed by a linear classifier for classification. For sentence-level lip-reading, we follow the

state-of-the-art lip-reading model [196] on LRS2 and build a hybrid CTC/attention model. We use the

same conformer encoder architecture as in the pre-training phase, followed by the transformer decoder

for sequence-to-sequence training [197]. We also perform fine-tuning experiments using the pre-trained

model.

5.2 Experimental Setup

5.2.1 Training Settings in the Pretext Task

The 3D front-end module preceding our ResNet consists of a convolutional layer with kernel size (5,

7, 7) followed by a max pooling layer. The conformer, on the other hand, is comprised of an initial

embedding module – feed forward layer combined with layer normalisation, dropout (0.1), activation

(ReLU – Rectified Linear Unit) and relative positional encoding (as proposed in [198]) – followed by 12

conformer blocks, as defined in [112]. The conformer blocks feature the following parameters: dff = 2048,

nhead = 4, dq = 256, dk = 256, dv = 256; where dff is the hidden dimension of the feed-forward modules,

nhead is the number of self-attention heads, and dq, dk, dv are the dimensions of the key (K), query (Q),

and value (V) in the self-attention layers respectively. The MLP consists of a linear layer with a hidden
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Figure 5.2: The variations of the end-to-end lip-reading architecture. The sub-figures in the top row
((a),(b),(c)) refer to the word-level lip-reading training procedures, while the sub-figures in the bottom
row ((d),(e),(f)) refer to sentence-level lip-reading. From left to right, (a) and (d) denote training from
scratch (the whole model is initialised randomly); (b) and (e) are feature extraction experiments based on
visual features extracted from the pre-trained model; and (c) and (f) are fine-tuning experiments. Blue
coloured blocks are trained from scratch on the downstream task; yellow coloured blocks are loaded
from the pre-trained model and kept frozen during the downstream task; and green coloured blocks are
loaded from the pre-trained model and are then fine-tuned for the downstream task. We abbreviate the
following model layers: TM: Transformer, FC: Fully-Connected layer, MS-TCN: Multi-Scale Temporal
Convolutional Network.

dimension of 256 units, ReLU activation, dropout, and a linear layer to project the representation to

256-dimensional latent space. For prediction, we average the PASE+ features, which are computed at

100 frames per second (fps), over time to match the frame rate of the input visual features (25 fps). We

optimise our model using Adam (β1 = 0.9, β2 = 0.98, ϵ = 10−9) combined with the Noam scheduler [197]

(25 000 warm-up steps). The model is trained on LRS3 with a batch size of 32. For simplicity, we

randomly sample 1 second from each clip and use it as the input to our network, discarding any utterances
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Figure 5.3: Accuracy of feature classification (LiRA-Frozen) on LRW based on features extracted from
different layers after pre-training on LRS3 via self-supervision. “res-b3” and “res-b4” refer to the output
of blocks 3 and 4 from the ResNet-18 respectively; and “ce-b2” to “ce-b12” refer to the layers from every
two conformer blocks from bottom to top.

Table 1: A comparison of the performance between the baseline methods and ours (pre-trained on LRS3)
on the LRW dataset.

Methods Strategy Acc. (%)

ResNet + BLSTM [31] Supervised 83.0
Two-stream 3D CNN [199] Supervised 84.1
ResNet + BLSTM [120] Supervised 84.3
ResNet + DenseTCN [200] Supervised 88.4
PerfectMatch [194] Self-supervised 71.6
PT-CDDL [201] Self-supervised 75.9
AV-PPC [202] Self-supervised 84.8

LiRA-Supervised [115] Supervised 87.4
LiRA-Frozen Self-supervised 83.1
LiRA-FineTuned Self-supervised 88.1

with less than 1 second in length.

5.2.2 Training Settings in Downstream Tasks

LiRA-Supervised In LiRA-Supervised, we train word-level (Figure 2a) and sentence-level lip-reading

models (Figure 2d) from scratch. In particular, for the task of word-level lip-reading, we add a MS-TCN

followed by a linear classifier with an output dimension of 500 on top of the encoder like [200]. A cross-

entropy loss is employed to optimise the whole model using AdamW [139] with β1 = 0.9, β2 = 0.999,

ϵ = 10−8 and a weight decay of 0.01 for 80 epochs with a batch size of 32. The initial learning rate is set
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to 0.0003. For the task of sentence-level lip-reading, we use 12 multi-head attention blocks (dff = 2048,

nhead = 4, dq = 256, dk = 256, dv = 256) together with a linear layer on the top of conformer blocks

like [196]. Following [160], we use a combination of CTC and cross-entropy loss to train a hybrid

CTC/Attention architecture for 50 epochs with a batch size of 8. In this case, we use Adam with β1 = 0.9,

β2 = 0.98 and ϵ = 10−9 with the first 25 000 steps for warm-up. The initial learning rate is set to 0.0004.

At the decoding phase, we use a beam size of 20 for beam search. During decoding, we also apply a

transformer-based language model trained on LRS2, LRS3, and Librispeech 960h [164] (16.2 million

words in total). Due to graphic memory limitations, we exclude utterances with more than 600 frames

during training.

LiRA-Frozen At the end of self-supervised training, the features extracted from the pre-trained frozen

encoder are fed to a classifier for evaluation. For word-level lip-reading, we use a MS-TCN, followed by

a linear layer with an output size of 500 for classification (Figure 2b). For the sentence-level lip-reading,

the LiRA features are first fed to 12 conformer blocks, and then the encoded representations are used for

CTC/attention joint training (Figure 2e).

LiRA-FineTuned We follow the same hyperparameter setting as LiRA-Supervised, but instead of

training from scratch, we initialise the encoder with the pre-trained weights from the pretext task and then

fine-tune the entire model for word-level lip-reading (Figure 2c) and sentence-level lip-reading (Figure 2f).

5.3 Results

5.3.1 VSR for Isolated Words

We first evaluate the performance of LiRA-Supervised by training the model from scratch. This leads to an

accuracy of 87.6% on LRW which is very close to the state-of-art performance. For LiRA-Frozen, which

is pre-trained on LRS3, the learnt visual speech representations are evaluated on word-level lip-reading by

training an MS-TCN classifier on top of the frozen representations, as illustrated in Figure 2b. Feature

extraction performance (LiRA-Frozen) for different layers is portrayed in Figure 5.3. We observe that the

representations extracted from the last layer of the ResNet-18 achieve a maximum accuracy of 83.7 %,

which outperforms the current state-of-the-art self-supervised method on LRW [201] by a large absolute

margin of 7.8 %, as seen in Table 1. It is clear that the performance generally decreases as the layer
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Figure 5.4: Effect of the size of training data on downstream task performance. (a): Accuracy of the
end-to-end model as a function of the percentage of the training set (on a logarithmic scale) used for
training on LRW. (b) WER achieved by the end-to-end model as a function of the percentage of labelled
data used for training on LRS2. All LiRA-Frozen and LiRA-FineTuned models are pre-trained on LRS3
via self-supervision. LiRA-Frozen models are trained using features extracted from the last layer of the
ResNet-18 in the pre-trained model, since it achieves the best performance as demonstrated in Figure 5.3.
“CL” refers to the model being trained using curriculum learning. LRW and LRS2 contain 165 and 222
hours of labelled training data respectively.

becomes deeper, which may indicate that the features extracted in deeper layers are further tuned towards

the pretext task and therefore fail to generalise as well for other tasks.

The performance of the 3 downstream scenarios while varying the amount of training data on LRW

is shown in Figure 5.4a. We use LRS3 for self-supervised pre-training. We observe that the feature

extraction approach leads to superior performance compared to LiRA-Supervised when using smaller

fractions of the labelled training set (1-2 %) and achieves very similar performance for larger amounts of

labelled data. This indicates that the pre-trained model learns useful visual features which work well also

on LRW. By adopting this methodology, we can simply train the classification layers while the encoder

remains frozen, and hence significantly reduce the training time of our model. If we fine-tune the full

model, including the encoder, then the performance improves further as shown in Figure 5.4a.

We also observe that the gap between the performance of LiRA-FineTuned and LiRA-Supervised becomes

smaller when we increase the amount of labelled data for training. This demonstrates that pre-training

using the proposed self-supervised task is particularly beneficial when the labelled training set is very

small. In the extreme case, where only 1 % of the labelled training data is used, LiRA-Supervised achieves

an accuracy of 1.3 %. In contrast, we obtain 33.9 % accuracy when LiRA-FineTuned is trained using
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Table 2: A comparison of the Word Error Rate (WER) between the baseline methods and ours (pre-trained
on LRS3) on the LRS2 dataset. CL: Curriculum learning.

Methods Strategy WER. (%)

Hyb. CTC/Att. [24] Supervised 63.5
Conv-seq2seq [203] Supervised 51.7

TDNN [171] Supervised 48.9
TM-seq2seq [204] Supervised 48.3

Hyb. CTC/Att. [196] Supervised 39.1
KD-seq2seq [195] Unsupervised 51.3

LiRA-Supervised [196] Supervised (CL) 39.1
LiRA-FineTuned Self-supervised 38.8

the same amount of data. This is mainly due to the fact that the self-supervised training provides a good

initialisation for network training. We also show that LiRA-Finetuned provides an absolute improvement

of 0.5 % in accuracy over LiRA-Supervised when both are trained on full LRW. This demonstrates that

LiRA-FineTuned consistently outperforms LiRA-Supervised, even for larger labelled training sets.

5.3.2 VSR for Continuous Speech

To investigate the performance of visual speech representations in a more challenging task, we run training

from scratch (Figure 2d ) and fine-tuning (Figure 2f ) experiments on LRS2 after pre-training on LRS3.

We present our results as a function of the fraction of labelled data used during training.

Results are shown in Figure 5.4b. It is evident that the performance of LiRA-FineTuned significantly

outperforms the supervised baseline. We also observe that the performance of LiRA-Supervised is hard

to optimise without a good initialisation. The performance becomes worse and worse as the training set

increases beyond 18 % of the total amount of labelled data. This is likely due to the large variance in

length for the videos in LRS2, which makes training from scratch especially difficult. To overcome this

problem we use curriculum learning. We first train the model using 11 % of the labelled training set and

then use this model for initialisation when training on the entire training set. This curriculum learning

strategy allows us to properly train a model which results in a 39.1 % WER.

Fine-tuning the self-supervised model leads to a small improvement over the curriculum learning strategy

resulting in a 38.8 % WER. This is the new state-of-the-art performance on the LRS2 dataset when

no external labelled datasets are used for training. We also observe that it leads to a 9.5 % absolute
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improvement compared to the previous state-of-the-art model [204], as reported in Table 2. Furthermore,

as displayed in Figure 5.4, we are able to outperform the previous state-of-the-art of 48.3 % WER using

18× fewer labelled data – 76 hours (36 % of LRS2) vs 1 362 hours (MVLRS, LRS2, and LRS3).

5.4 Conclusion

In this chapter, we have presented an audio-visual self-supervised learning framework to enhance visual

speech representations by cross-modal self-supervised learning. In particular, we train a visual model

by predicting acoustic features from visual speech and observe that it could be adapted for lip-reading

with remarkable success. By fine-tuning our models for this new task, we achieve an accuracy of 88.1 %

on LRW and report a WER of 38.8 % on LRS2, which outperforms the models trained from supervised

learning. We show that LiRA could function as a feature extractor or even provide a good initialisation for

downstream tasks. Therefore, LiRA is powerful to learn effective speech representations, which could be

a replacement for feature extraction for downstream tasks. In the next chapter, we will study the Lombard

effect in an AVSR system.



Chapter 6

Investigating the Lombard Effect Influence

on Audio-Visual Speech Recognition

Contents

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Recently several AVSR models have been presented [2, 19, 23] which aim to augment the performance

of acoustic speech recognisers. The main application of such systems is in noisy acoustic environments

since the main assumption is that the visual signal is not affected by noise and can therefore enhance the

performance of speech recognition systems. However, this assumption is not true due to the Lombard

effect, i.e., the change in speaking style in noisy environments which aims to make speech more intelligible

and affects both the acoustic characteristics of speech and the lip movements. In addition, such models

are usually trained with clean speech which is artificially mixed with additive noise. This approach does

not correspond to a realistic scenario where Lombard (and not plain) speech will be mixed with noise.

This mismatch can potentially harm the performance of audio-only, video-only and audio-visual speech

recognisers.

Few works have investigated the impact of the Lombard effect on audio-only speech recognition [205,

36, 206]. The main finding is that the performance of a model trained on plain speech mixed with noise
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is significantly degraded when tested on noisy Lombard speech. This is true even when compensated

Lombard speech is used, i.e., the Lombard utterances are normalised to the same energy as the plain

speech utterances, although the performance drop is smaller in this case [205]. A similar performance

degradation has also been reported for speaker recognition [207]. However, if noisy Lombard speech

is used for training then a significant improvement is reported. It is also worth pointing out that the

performance of a model trained and tested on noisy Lombard is higher than a model trained and tested on

noisy plain speech [205].

Even fewer works have investigated the effect of the Lombard reflex on visual and audio-visual speech

recognition and the results are not conclusive. Marxer et al. [205] report an improvement on the recognition

of visual Lombard speech no matter if the model is trained on plain or Lombard speech. As expected the

improvement is higher when visual Lombard speech is used for training. On the other hand, Heracleous et

al. [208] reported a performance drop when there is a mismatch between training and testing conditions.

The same conclusion was reached also when an AVSR system was used.

In this work, we investigate the impact of the Lombard effect on end-to-end audio-only, video-only

and AVSR. To the best of our knowledge, this is the first work that studies the Lombard effect within

the framework of deep end-to-end models which learn to extract features directly from the raw images

and audio waveforms. This is in contrast with the majority of previous works which used MFCCs in

combination with GMM-HMMs.

In addition, we also consider both multi-speaker and subject-independent scenarios. The former has been

extensively studied in previous works [208, 205] and offers an insight on the impact of the Lomard effect.

However, in a real scenario we are mainly interested in the performance on unseen speakers. Hence, we

first conduct multi-speaker experiments in order to test the claims made by prior works. Then we also

conduct subject-independent experiments in order to investigate the performance on unspeen speakers

which has not been explored before.

Finally, we report results on sentence-level speech recognition. This is in contrast to previous works which

mainly focus either on isolated words [208] or on specific words within a sentence [205]. We believe that

the conclusions reached by this approach can be more useful for a practical speech recognition system

where the goal will most likely be to recognise all words rather than recognise just isolated words.
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We show that properly modelling Lombard speech during training leads to improved performance for

audio-only, video-only and audio-visual speech recognition models in all experiments. We also show

that in subject-independent experiments, including even a relatively small set of Lombard speech during

training can significantly improve the performance of an audio-visual speech recogniser in real conditions,

i.e., when testing on noisy Lombard speech. Finally, we show that the standard approach followed in

the literature, where noise is mixed with plain speech for training and testing, overestimates the actual

performance on noisy Lombard speech in a multi-speaker scenario. In case of a subject-independent

scenario, the actual performance on noisy Lombard speech is overestimated for SNRs higher than -3dB

but underestimated for lower SNRs. On the other hand, the visual performance is correctly estimated in

all scenarios.

6.1 Methodology

6.1.1 Network Architecture

The end-to-end AVSR architecture is shown in Figure 6.1 and is similar to the one proposed in [2]. A

CTC loss is added so the model can recognise continuous speech.

Visual Stream visual stream consists of a spatiotemporal convolutional layer, followed by a ResNet-

18 [152] and a 2-layer BGRU. Specifically, the temporal-wise 3D convolutional layer has a kernel size of

5 frames. Then, frame-level features are extracted by ResNet-18. The output of ResNet-18 is fed to a

2-layer BGRU to model the temporal dynamics of visual features. Note that the outputs of the forward

and backward GRU are concatenated together instead of added together. This means that although there

are 128 GRU cells, the features produced by the GRU have a dimensionality of 256.

Audio Stream The audio stream consists of 5 temporal convolutional blocks, followed by a 2-layer

BGRU and an average pooling layer. Each convolutional block includes a temporal convolutional layer,

ReLU activation and batch normalisation. The first temporal convolutional layer uses a kernel of 5ms

and a stride of 0.25ms to extract fine-scale spectral information. The output of the convolutional layers is

fed to a 2-layer BGRU. Similarly to the visual stream, the outputs of the forward and backward BGRUs

are concatenated. Finally, an averaging pooling layer is used to reduce the audio frame rate to the visual

frame rate.
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Figure 6.1: End-to-end AVSR architecture overview. Raw images and audio waveforms are fed to the
visual and audio streams, respectively, which produce features at the same frame rate at the bottleneck
layer. These features are fused together and fed into another 2-layer BGRU to model the temporal
dynamics. CTC [4] is used as the loss function.

Fusion Layers Once the 256 audio features and 256 visual features are extracted, they are concatenated

and fed into a 2-layer BGRU to model their temporal dynamics. Then a softmax layer follows which

provides the characters probabilities for each frame.

6.2 Experimental Setup

6.2.1 Preprocessing

Video Preprocessing We use dlib [209] to detect and track facial landmarks for frontal faces and the

face alignment library proposed in [136] for profile faces. The faces are first aligned using a neutral

reference frame in order to normalise them for rotation and size differences. This is performed using an

affine transform using 5 stable points, two eyes corners in each eye and the tip of the nose. Then the centre

of the mouth is located based on the tracked points and a bounding box of 140 by 200 and 80 by 60 is

used to extract the mouth ROI on frontal and profile faces, respectively.
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Audio Preprocessing Lombard utterances have greater energy than plain speech utterances so for a

given noise level their SNR is higher than noisy plain speech. So similarly to [205] we also generate

‘compensated’ Lombard speech, where the energy of Lombard speech is normalised to the same energy as

plain speech. In this case, the SNR between Lombard and plain utterances is the same for a given noise

level. To remove the artificial variability of the signals caused by the speaker-to-microphone distance, we

follow the approach suggested in [205]. We normalise the non-Lombard and ‘compensated’ Lombard

signals to the same root mean square (RMS) of 0.05. For the Lombard signals, we set the RMS to

0.05 · x̄L
rms/x̄

NL
rms, where x̄L

rms and x̄NL
rms are the average RMS value on Lombard speech and non-Lombard

speech corpus.

6.2.2 Data Augmentation

During training, two data augmentation methodologies are performed in raw images, random cropping

and horizontal flipping. Specifically, each frontal mouth ROI is randomly cropped to a size of 130 by 190

and each profile mouth ROI is randomly cropped to a size of 75 by 55. During testing, the central patch is

cropped. Horizontal flipping with a probability of 0.5 is used to increase the variation on training samples.

Babble noise at different levels is added into the audio waveforms during training. The SNR levels range

from -15dB to 6dB with an interval of 3dB. One of the noise levels or the clean signal is selected under

a uniform distribution, which enhance robustness to different noise levels. Note that this audio noise

selection mechanism is only performed in the subject-independent experiments. In the multi-speaker

experiments, we train SNR-specific models, i.e., the same noise level is used both for training and testing.

6.2.3 Training Settings

We firstly train each stream from scratch. An initial learning rate of 0.001 and a mini-batch of 64 are

used for the audio stream and an initial learning rate of 0.0003 and a mini-batch of 10 are used for the

visual stream. We train the audio stream for 400 epochs and the visual stream for 120 epochs separately.

Once the audio and visual streams have been trained, their weights are fixed and the 2-layer BGRU used

for fusion is trained with an initial learning rate of 0.0003 and a mini-batch of 10. Finally, the entire

audio-visual model is fine-tuned for another 40 epochs.



6.3. Results 103

Figure 6.2: WER of the end-to-end models as a function of the noise level in a multi-speaker scenario. A:
audio-only model, AV: audio-visual model, L: Lombard, NL: non-Lombard, CL: ‘compensated’ Lombard.
X-Y indicates a model trained on X (L or NL) speech and tested on Y (L or NL or CL) speech. Best seen
in colour.

Views L-L NL-L NL-NL

WER (Frontal) 23.57 26.05 25.59

Table 6.1: Video-only results on a multi-speaker scenario. L: Lombard, NL: non-Lombard. X-Y indicates
a model trained on X (L or NL) speech and tested on Y (L or NL) speech.

6.3 Results

6.3.1 Multi-Speaker Experiments

In this set of experiments, we investigate the impact of the Lombard effect in a multi-speaker scenario

when end-to-end deep models are used for speech recognition. A similar study has been conducted

in [205], but a traditional GMM-HMM approach was followed. For the purpose of this study, we use 30,

10 and 10 utterances from each subject for training, validation and testing, respectively.

We first train SNR-specific audio-only models for non-Lombard and Lombard speech. Results are shown

in Figure 6.2. We notice that when we train a model on non-Lombard speech and test it on Lombard speech

(red solid line), a significant drop in performance compared to testing on non-Lombard speech (orange
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Views L-L NL-L NL-NL

WER (Frontal) 25.00 27.84 27.66

WER (Profile) 39.45 47.61 47.47

Table 6.2: Video-only results on subject-independent experiments. L: Lombard, NL: non-Lombard. X-Y
indicates a model trained on X (L or NL) speech and tested on Y (L or NL) speech.

solid line) is observed between -9dB and 6dB. This is consistent with the results presented in [205] and is

mainly the consequence of the SNR mismatch between Lombard and plain speech. Since SNR-specific

models are trained where the noise level is computed on the plain utterances the corresponding Lombard

utterances have a higher SNR due to their higher energy. However, between -12dB and -15dB, there is no

difference between the two training approaches. This is probably to the high levels of noise which do

not allow for proper training of a plain speech recogniser and the WER is above 90%. When we test on

‘compensated’ Lombard speech, the results are still worse than non-Lombard speech (up to 4%). This is

also consistent with [205]. This indicates that not only the SNR mismatch affects the performance but

also the difference in acoustic characteristics between Lombard and non-Lombard speech, to a smaller

extent though. When we train on Lombard speech, a significant improvement in performance is observed

when we test on Lombard speech (green solid line) compared to training and testing on non-Lombard

speech (orange solid line).

The results of video-only models are reported in Table 6.1. A slight improvement of 0.45% is reported

in the case of NL-L over NL-NL. This is not entirely consistent with [205] who reported a greater

improvement of 4.6%. We also show that L-L has an absolute improvement of 2.48% compared to NL-NL,

which shows the benefit of properly modelling Lombard speech.

The results of audio-visual models are shown in Figure 6.2. As expected the audio-visual models have a

lower WER compared to audio-only models across all noise levels. The same conclusions as in the case

of audio-only models are drawn. It is worth pointing out again that when Lombard speech is properly

modelled then a better performance is achieved.

6.3.2 Subject-Independent Experiments

Previous experiments considered SNR-specific and multi-speaker models. However, in real scenarios,

we would like to have a model that works under different noise levels and on unseen subjects. To better
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Figure 6.3: WER of the end-to-end as a function of the noise level in a subject-independent scenario. A:
audio-only model, AV: audio-visual model, L: Lombard, NL: non-Lombard, CL: ‘compensated’ Lombard.
X-Y indicates a model trained on X (L or NL) speech and tested on Y (L or NL or CL) speech. Best seen
in colour.

investigate the impact of the Lombard effect in subject-independent experiments, the training, validation

and test sets are divided into 36, 6 and 12 subjects, respectively. It is important to note that the same

number of female and male speakers are included on validation and test sets.

The results of audio-only experiments are shown in Figure 6.3. The main difference with the multi-speaker

experiments is that the performance on Lombard speech (for a model trained on non-Lombard speech)

is better than the performance on non-Lombard speech between -15dB and -6 dB. This is probably due

to the fact that during training all SNR levels are seen so the influence of the SNR mismatch between

Lombard and plain speech is minimised. The same pattern is also observed for ‘compensated’ Lombard

speech. This indicates that although at higher SNRs the performance of a model trained and tested on

non-Lombard speech, which is the usual approach in the literature, overestimates the actual performance,

in lower SNRs it actually underestimates it.

The video-only results are reported in Table 6.2. When we train and test a model on Lombard speech, an

absolute improvement of 2.66% and 8.02% is observed in frontal faces and profile faces, respectively, over

the NL-NL scenario. The performance of NL-L is very similar to NL-NL which reveals that the approach

followed in the literature (NL-NL) provides a correct estimate of the actual performance (NL-L). We also
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Figure 6.4: WER of the end-to-end audio-visual model as a function of the noise level in a subject-
independent scenario. L: Lombard, NL: non-Lombard. (NL,0.25L)-L indicates the performance is
reported using a model trained on non-Lombard and 25% Lombard speech and tested on Lombard speech.
The other combinations follow the same pattern. Best seen in colour.

notice that the performance on profile faces is much worse due to less information being available as

well as inaccurate tracking in profile videos. The results of audio-visual models are shown in Figure 6.3.

Similarly to the multi-speaker scenario, the best performance is achieved when a model is trained and

tested on Lombard speech.

Figure 6.4 shows the performance of an audio-visual model as a function of the percentage of Lombard

speech combined with plain speech for training. It is clear that even when the Lombard speech utterances

added to the training set account for 25% of plain speech the gap between NL-L and L-L is reduced to half.

Also, when Lombard speech accounts for 50% of plain speech similar performance to the L-L scenario is

achieved for very low SNRs.

6.4 Conclusion

In this chapter, we have investigated the impact of the Lombard effect on audio-only, video-only and

audio-visual speech recognition. In contrast to the majority of previous works which used MFCCs or

DCT-based features in combination with GMM-HMMs to predict specific words (letter and digit), we

present the first work which leveraged end-to-end deep architectures for continuous speech. We evaluate
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the performance on Lombard GRID in both multi-speaker and subject-independent scenarios. Since

there exists an SNR mismatch in Lombard and non-Lombard speech, we show that the performance on

Lombard speech in an audio-only model trained on non-Lombard speech is better than the performance

on non-Lombard speech. More importantly, we show that training and testing on non-Lombard speech is

a bad estimate for the performance on audio-only speech recognition. More specifically, it overestimates

the actual performance at higher SNRs but underestimates it in lower SNRs. However, the performance on

visual Lombard speech, for a model trained on visual non-Lombard speech, is similar to the performance

on visual non-Lombard speech. Furthermore, by adding a small amount of Lombard speech to the training

set, we show that the performance in a real scenario could be significantly improved. In future work, we

will be interested in how different types of background noise affect the performance of AVSR models.
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In Chapter 6, we proposed an audio-visual self-supervised approach based on the strong correlation

between audio and visual sources, which has achieved state-of-the-art performance on both visual speech

recognition for isolated words and continuous speech. However, recent studies [210, 43] show that deep

networks are susceptible to adversarial attacks. Given any input x and a classifier f (·), an adversary tries

to carefully construct a sample xadv that is similar to x but f (x) ≠ f (xadv). The adversarial examples are

indistinguishable from the original ones but can easily degrade the performance of deep classifiers.

Existing studies on adversarial attacks have mainly focused in the image domain [43, 44, 45, 46]. Recently,

adversarial attacks in the audio domain have also been presented [211, 212]. One of the most prominent

studies is the iterative optimisation-based attack [212], which directly operates on an audio clip and enables

it to be transcribed to any phrase when a perturbation is added. Works on defense approaches against

adversarial attacks can be divided into three categories: adversarial training [43], gradient masking [213]
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Figure 7.1: An overview of our proposed detection method. (a) A video and an audio clip are fed to
the end-to-end AVSR model. They are also fed to the synchronisation network (b) which estimates a
synchronisation confidence score used for determining if the audio-visual model has been attacked or not
(c). The confidence distribution of 300 adversarial and benign examples from the GRID dataset is shown
in (d).

and input transformation [214]. The first one adds adversarial examples in the training set whereas the

second one builds a model which does not have useful gradients. Both of them require the model to be

retrained, which can be computationally expensive. In contrast, the last one attempts to defend adversarial

attacks by transforming the input.

Inspired by the idea of using temporal dependency to detect audio adversarial examples, we propose a

simple and efficient detection method against audio-visual adversarial attacks in this chapter. The key

idea is that the audio stream is highly correlated with the video of the face (and especially the mouth

region). In case of an adversarial example, the added noise on the audio and video streams is expected

to weaken the audio-visual correlation. Hence, we propose the use of audio-visual synchronisation as a

proxy to correlation. In other words, we expect higher synchronisation scores for benign examples and

lower scores for adversarial examples. The proposed detection method is tested on speech recognition

attacks on models trained on the LRW [30] and GRID datasets [56]. Our results show that we can detect

audio-visual adversarial attacks with high accuracy. This work was published in ICASSP 2021 [215].

In Section 7.1, we introduce the adversarial attacks in audio-only, visual-only and audio-visual models.

We describe our synchronisation-based detection approach in Section 7.1.3, Then I present experimental

results in Section 7.3.

Generated adversarial samples can be seen at https://mpc001.github.io/av adversarial examples.html

https://mpc001.github.io/av_adversarial_examples.html
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7.1 Methodology

7.1.1 Attacks

In this study, we consider two attack methods, Fast Gradient Sign Method (FGSM) [43] and the iterative

optimisation-based attack [212]. FGSM, which is suitable for attacks on classification models, computes

the gradient with respect to the benign input and each pixel can be updated to maximise the loss. Basic

Iterative Method (BIM) [216] is an extension of FGSM by applying it multiple times with a small step

size. Specifically, given a loss function J(·, ·) for training the classification model f (·), the adversarial

noise xadv is generated as follows:

xadv
0 = x

xadv
N+1 = Clipx,ϵ{x

adv
N + αsign(∇xJ( f (xadv

N ), ytrue)} (7.1)

where α is the step size, xadv
N is the adversarial example after N-steps of the iterative attack and ytrue is the

true label. After each step, pixel values in the adversarial images xadv are clamped to the range [x−ϵ, x+ϵ],

where ϵ is the maximum change in each pixel value. This method was proposed for adversarial attacks on

images but can also be applied to audio clips by crafting perturbation to the audio input.

The second type of attack [212] has been recently proposed and is suitable for attacks on continuous

speech recognition models. Audio adversarial examples can be generated, which can be transcribed to

any phrase but sound similar to the benign one. Specifically, the goal of this targeted attack is to seek

an adversary input xadv, which is very close to the benign input x, but the model decodes it to the target

phrase ztarget. The objective of the attack is the following:

minimize J( f (x + δ), ztarget)

such that ∥δ∥ < ϵ (7.2)

where ϵ is introduced to limit the maximum change for each audio sample or pixel and δ is the amount of

adversarial noise.
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7.1.2 Audio-Visual Speech Recognition Threat Model

The architecture is shown in Figure 1a. We use the end-to-end audio-visual model that was proposed

in [217]. The video stream consists of spatiotemporal convolution [17], a modified ResNet18 network

and a 2-layer BGRU network whereas the audio stream consists of a 5-layer CNN and a 2-layer BGRU

network. These two streams are used for feature extraction from raw modalities. The top two-layer BGRU

network further models the temporal dynamics of the concatenated feature.

According to the problem type, two different loss functions are applied for training. The multi-class

cross entropy loss, where each input sequence is assigned a single class, is suitable for word-level speech

recognition. The CTC loss is used for sentence-level classification. This loss transcribes directly from

sequence to sequence when the alignment between inputs and target outputs is unknown. Given an input

sequence x = (x1, ..., xT ), CTC sums over the probability of all possible alignments to obtain the posterior

of the target sequence.

7.1.3 Synchronisation-based Detection Method

Chung et al. [218, 219] introduced the SyncNet model, which is able to predict the synchronisation error

when raw audio and video streams are given. This error is quantified by the synchronisation offset and

confidence score. A sliding window approach is used to determine the audio-visual offset. For each

5-frame video window, the offset is found when the distance between the visual features and all audio

features in a ± 1 second range is minimised. The confidence score for a particular offset is defined as the

difference between the minimum and the median of the Euclidean distances (computed over all windows).

Audio and video are considered perfectly matched if the offset approaches to zero with a high level of

confidence score.

In this work, we aim to explore if such synchronisation is affected by adversarial noise. The detection

method is shown in Figure 1b and 1c. In the detection model, we measure the temporal consistency

between the audio and video streams via a model trained for audio-visual synchronisation. For benign

audio and video streams, the confidence score should be relatively high since audio and video are aligned

and therefore highly synchronised. However, for adversarial audio and video examples, the confidence

score is expected to be lower. The added perturbation, which aims to alter the model toward the target
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adversarial example

adversarial noise

benign example

(a) (b) (c)

Figure 7.2: One example using basic iterative attack on the LRW dataset. Benign examples, adversarial
noise examples, and adversarial examples are illustrated from top to bottom. (a) Raw images (ϵV=4, ϵV=8),
(b) audio waveforms (ϵA=256, ϵA=512), and (c) audio log-spectrum (ϵA=256, ϵA=512) are presented
from left to right. It is noted that the adversarial visual noise has been scaled with a ratio of 64 for a better
illustration since the maximum distortion (ϵV=8) is 2 pixels.

transcription, reduces the correlation between the two streams, hence they are less synchronous. Figure

1d. shows the confidence distribution of 300 benign and adversarial examples from the GRID dataset.

7.2 Experimental Setup

7.2.1 Attacks

We evaluate our proposed method using two adversarial attacks on both modalities. We assume the

parameters of audio-visual models are known to the attacker.

Attacks against Speech Recognition for Isolated Words Attacks such as FGSM and BIM are suitable

for word recognition models trained on the LRW dataset. For FGSM, we consider three values for ϵA

used in the audio stream (256, 512, 1024) and three values for ϵV for the video stream (4, 8, 16). For BIM,

the step size αV was set to 1 in the image domain, which means the value of each pixel is changed by 1

at each iteration. The step size αA in the audio domain is set to 64. We follow the number of iterations

setting suggested by [216], which is selected to be min(ϵV + 4, 1.25ϵV ).

Attacks against Speech Recognition for Continuous Speech For attacking a speech recognition model

trained on GRID we use a recently proposed targeted attack [212]. The maximum distortion allowed as

Pixel values are in the range of [0, 255]. Audio samples are in the range of [-32768, 32767].
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defined by ϵ (see Eq. 7.2) is limited in {256, 512, 1024}, {4, 8, 16} for audio and video, respectively, and is

reduced during iterative optimisation. We implement the attack with 800 iterations. In our studies, 10

random utterances are selected as target utterances. 300 adversarial examples are randomly selected for

each target utterance.

7.2.2 Evaluation Metrics

We use the Euclidean distance (L2) for measuring the similarity between two images. We also use the

L∞ norm to measure the maximum change per pixel. For audio samples we follow [212] and convert the

L∞ norm to the scale of Decibels (dB): dB(x) = max
i

20 · log10(xi), where xi is an arbitrary audio sample

point from the audio clip x. The audio distortion is specified as the relative loudness to the benign audio,

which can be defined as dBx(δ) = dB(δ) − dB(x).

The Area Under the Curve (AUC) score is used for evaluating the detection approach. We compute the

synchronisation confidence score in benign and adversarial examples and by varying the threshold we

compute the Receiver Operating Characteristic (ROC) curve.

Finally, in order to compare how this approach would work in a real scenario, we select the threshold

(from Figure 1c) which maximises the average F1 score of adversarial and benign classes on the validation

set. Then we use this threshold to compute the average F1 score on the test set.

7.3 Results

7.3.1 AVSR for Isolated Words

Detection results for attacks on word-level speech recognition are shown in Table 7.1. In the presence

of adversarial noise, the Top-1 Accuracy drops from 97.20% to below 40% using FGSM. As ϵA and

ϵV increase the accuracy drops (from 38.27% for the lowest levels of noise to 10.40% for the highest

noise levels). On the other hand, the AUC and F1 scores increase, since the highest levels of noise make

detection easier. Similar conclusions can be drawn when BIM is used. Accuracy varies between 0% and

7% depending on the noise level, the AUC varies between 0.77 and 0.90 and the F1 scores between 0.71

This is the performance of the model trained on the LRW dataset when benign examples are fed to it.
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Attacks Top-1 Distortion Measures
(Configuration) Acc. LV

2 LA
∞(dB) AUC F1

FGSM (ϵA=1024, ϵV=16) 10.40% 3.46 -19.26 0.99 0.95
FGSM (ϵA=512, ϵV=16) 21.87% 3.46 -25.28 0.96 0.89
FGSM (ϵA=256, ϵV=16) 32.80% 3.46 -31.30 0.90 0.82
FGSM (ϵA=1024, ϵV=8) 12.40% 1.73 -19.26 0.98 0.94
FGSM (ϵA=512, ϵV=8) 24.40% 1.73 -25.28 0.94 0.86
FGSM (ϵA=256, ϵV=8) 34.73% 1.73 -31.30 0.86 0.78
FGSM (ϵA=1024, ϵV=4) 15.20% 0.87 -19.26 0.98 0.93
FGSM (ϵA=512, ϵV=4) 27.53% 0.87 -25.28 0.93 0.85
FGSM (ϵA=256, ϵV=4) 38.27% 0.87 -31.30 0.83 0.76
BIM (ϵA=1024, ϵV=16) 0.00% 1.66 -19.26 0.90 0.82
BIM (ϵA=512, ϵV=16) 0.00% 1.66 -25.28 0.89 0.81
BIM (ϵA=256, ϵV=16) 0.00% 1.70 -31.30 0.84 0.76
BIM (ϵA=1024, ϵV=8) 0.00% 1.07 -23.34 0.85 0.77
BIM (ϵA=512, ϵV=8) 0.00% 1.07 -25.28 0.85 0.77
BIM (ϵA=256, ϵV=8) 0.00% 1.08 -31.30 0.81 0.74
BIM (ϵA=1024, ϵV=4) 0.07% 0.67 -29.36 0.78 0.72
BIM (ϵA=512, ϵV=4) 0.07% 0.67 -29.36 0.78 0.72
BIM (ϵA=256, ϵV=4) 0.07% 0.67 -31.30 0.77 0.71

Table 7.1: Results for the proposed adversarial attack detection approach on word recognition models
trained on the LRW dataset.LV

∞ is 1, 2 and 4 pixels when ϵV is 4, 8 and 16, respectively.

and 0.82. We should also mention that although adversarial noise is imperceptible for all values of ϵV it

becomes more and more perceptible as ϵA increases.

It is clear from Table 7.1 that for both types of attacks the distortion is smaller when ϵA and ϵV decrease

and as a consequence detection becomes harder: both AUC and F1 scores go down. However, such attacks

are less successful since the classification rate goes up.

We also notice that when the attack is stronger, e.g., BIM is used instead of FSGM, the classification rate

goes down, i.e., the attack is more successful, and at the same time the distortion (LV
2 ) becomes smaller.

Consequently, detection becomes more difficult and this is reflected in the lower AUC and F1 scores for

BIM than FGSM.

7.3.2 AVSR for Continuous Speech

In this section we consider two types of attacks on continuous speech recognition: 1) partially targeted

attacks, where the WER between the transcribed result and target phrase is up to 50%, and 2) fully targeted
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Threshold Success Distortion Measures
ϵA ϵV Rate LV

2 LV
∞ LA

∞(dB) AUC F1

1024 8 100% 3.14 0.019 -43.34 0.84 0.75
512 8 94% 3.38 0.021 -43.93 0.84 0.75
256 8 67% 3.63 0.022 -46.77 0.83 0.75

1024 4 99% 1.54 0.010 -40.14 0.79 0.71
512 4 78% 0.82 0.010 -41.14 0.78 0.71
256 4 42% 1.98 0.012 -45.63 0.74 0.68

Table 7.2: Average results over 10 utterances of the proposed audio-visual synchronisation detection on
partially targeted adversarial attacks on continuous speech recognition models trained on GRID. The
success rate is the proportion of adversarial examples with WER less than 50%. (ϵA ∈ {256, 512, 1024},
ϵV ∈ {4, 8})

Threshold Success Distortion Measures
ϵA ϵV Rate LV

2 LV
∞ LA

∞(dB) AUC F1

1024 8 77% 3.26 0.020 -35.22 0.90 0.82
512 8 36% 3.88 0.024 -39.29 0.89 0.81
256 8 8% 4.15 0.026 -43.37 0.87 0.81

1024 4 66% 1.73 0.011 -34.12 0.87 0.78
512 4 19% 2.13 0.013 -38.08 0.84 0.77
256 4 2% 2.17 0.013 -43.85 0.83 0.77

Table 7.3: Average results over 10 utterances of the proposed audio-visual synchronisation detection on
fully targeted adversarial attacks on continuous speech recognition models trained on GRID. The success
rate is the proportion of adversarial examples with WER = 0%. (ϵA ∈ {256, 512, 1024}, ϵV ∈ {4, 8})

Target Success Distortion Measures
Phrase Rate LV

2 LV
∞ LA

∞(dB) AUC F1

bbaazp 81% 1.842 0.011 -41.56 0.78 0.71
bwbonn 70% 1.877 0.012 -40.71 0.79 0.72
lgwysa 62% 1.956 0.012 -40.48 0.80 0.72
lraces 78% 1.795 0.011 -41.38 0.77 0.70

pbapoa 91% 1.821 0.011 -41.51 0.78 0.71
prbaos 81% 1.734 0.011 -41.55 0.77 0.72
prbzts 87% 1.673 0.010 -41.87 0.77 0.70
sgifoa 72% 1.791 0.011 -40.97 0.79 0.71
srixfn 76% 1.824 0.011 -40.12 0.80 0.70
swipfn 83% 1.700 0.011 -41.22 0.78 0.71

Table 7.4: Results of the proposed audio-visual synchronisation detection on partially targeted adversarial
attacks on continuous speech recognition models trained on GRID. The WER between transcribed and
target phrases is up to 50%. The success rate is the proportion of adversarial examples with WER less
than 50%. (ϵA = 512, ϵV = 4)
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attacks where the goal of the attack is that the transcribed result is the same as the desired target phrase

(WER = 0%). We also limit the values of ϵV to 4 and 8 since ϵV = 16 results in very perceptible adversarial

examples especially in the case of fully targeted attacks.

Average detection results over 10 utterances for partially targeted attacks on sentence-level speech

recognition are shown in Table 7.2. It is clear that the success rate is fairly high, over 90% in most cases.

Only when ϵA is 256 and ϵV is 4 then the attack is much less successful with a success rate of 42%. At the

same time the detection rates are quite high for most combinations of the two thresholds, varying between

0.74 and 0.84 for AUC and 0.68 to 0.75 for F1 score.

Average detection results over 10 utterances for fully targeted attacks on sentence-level speech recognition

are shown in Table 7.3. In this case the success rates are much lower than the partially targeted attack due

to the difficulty of the task. Relatively high success rates are observed when ϵV is either 4 or 8 and ϵA is

1024 which results in more perceptible adversarial examples. In addition the generated audio and video

adversarial examples are more distorted than the ones generated by the partially targeted attacks. In turn,

this leads to higher AUC scores, between 0.83 and 0.90, and F1 scores, between 0.77 and 0.82.

Results per sentence for the partially targeted attack when ϵV is 4 and ϵA is 512 are shown in Table 7.4.

Although the success rates vary a lot (from 62% to 91%) depending on the sentence, detection measures

AUC and F1 are similar for all sentences. We also observe that the maximum distortions applied to the

audio and video signals are similar in most cases.

7.4 Conclusion

In this chapter, we propose to leverage audio-visual synchronisation as a detection method of adversarial

attacks. In contrast to previous work focusing on exploring the detection methods of attacks against

audio-only models or visual-only models, we have investigated the detection methods in end-to-end

audio-visual models. Specifically, we hypothesise that the synchronisation confidence score would be

lower in adversarial than benign examples and demonstrate that this could be used for detecting adversarial

attacks. To verify this hypothesis, adversarial attacks are first applied to word-level classification and

continuous speech recognition models, respectively. For the former, we apply both FGSM and the iterative

bbaazp: bin blue at a zero please, bwbonn: bin white by o nine now, lgwysa: lay green with y seven again, lraces: lay red at
c eight soon, pbapoa; place blue at p one again, prbaos: place red by a one soon, prbzts: place red by z two soon, sgifoa: set
green in f one again, srixfn: set red in x four now, swipfn: set white in p five now.
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optimisation-based attack on the LRW dataset. For the latter, we apply both partially targeted attacks

and fully targeted attacks based on [212] on the GRID dataset. We empirically show that our methods

could detect adversarial attacks with a high detection rate. Furthermore, we present per-utterance results

in partially targeted attack experiments, showing that the maximum distortions applied to the audio and

visual streams are similar in most cases. For future work, It would be interesting to note that a more

traditional non-deep learning model which cannot be attacked could be investigated. Furthermore, we

are interested in developing better audio-visual synchronisation methods for the detection of adversarial

attacks. Another avenue for follow-up research will be how to leverage the temporal dependency in the

detection of deep fake videos.



Chapter 8

Conclusion

Contents

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

8.4 Ethical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1 Summary

This thesis investigates the problem of AVSR in realistic scenarios. We first study AVSR of isolated words

in Chapter 3. Most previous state-of-the-art models [12, 13, 17, 2] in this field relied on multiple training

phases, which resulted in complex training procedures. To address this issue, we propose a VSR model

that can be trained in an end-to-end fashion and therefore greatly simplifies the training process. We

empirically show that our model could help not only improve performance but also reduce the training time.

On top of this pipeline, we introduce a new temporal model named MS-TCN to learn from multi-scale

temporal dimensions, which significantly increase the recognition accuracy. Two different variants of TCN

are also introduced and evaluated, which are DC-TCN and DS-TCN, respectively. The former variant

(DC-TCN) captures the temporal information in a dense favour and therefore has demonstrated more

accurate VSR performance, while the latter one (DS-TCN) utilise depth-wise convolution to accelerate

the computational speed at the cost of slightly reduced accuracy. Additionally, we also investigate how

118
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different data augmentation techniques can improve the performance and enhance the robustness of AVSR

models against noises. The knowledge distillation technique is also employed to learn more accurate

models.

In Chapter 4, we take a further step from word-level AVSR to continuous speech recognition. In

this chapter, we present an AVSR model based on a ResNet-18 and Conformer that can be trained

in an end-to-end manner. The audio and visual encoders learn to extract features directly from raw

image pixels and audio waveforms, respectively, and the extracted features were subsequently fed into

conformer models for temporal aggregation, while the audio-visual fusion is performed through a MLP.

The evaluation on continuous speech recognition datasets demonstrates that state-of-the-art performance

can be achieved through the combinations of 1) training on large-scale datasets, which is the current trend

in AVSR community, and 2) the application of a carefully designed end-to-end model. We emphasise

the importance of hyper-parameter optimisation and data augmentation techniques like time-masking in

the training stage, which are crucial to learn more accurate and more robust models. We also propose

a new architecture based on auxiliary tasks, i.e. the VSR model also needs to learn from audio visual

representations obtained by pre-trained ASR and VSR models. Last but not least, we provide empirical

evidence that using larger datasets can improves the performance, which is in line with recent works in

this field. Our approach outperforms all existing VSR baselines trained on publicly available datasets in

English, Spanish and Mandarin by a large margin.

Instead of collecting and annotating a large number of audio-visual pairs, which is costly and tedious, we

study how to leverage large amounts of unlabelled audio-visual data to learn better speech representations

in a novel self-supervised framework. In Chapter 5, we propose a novel framework to learn visual speech

representations from audio. Specifically, we train a ResNet+Conformer model to predict acoustic features

from unlabelled visual speech. Experimental results showed that our approach significantly outperforms

other self-supervised methods on the LRW dataset and achieves state-of-the-art performance on LRS2

using only a fraction of the total labelled data.

We study the impact of the Lombard effect on end-to-end ASR, VSR, and AVSR models in Chapter 6.

Experiments are performed under multi-speaker and subject-independent scenarios. We show that it is

beneficial to properly model Lombard speech. We also show that training and testing on noisy plain

speech, which is commonly used in the literature, is a good estimate for the performance on visual
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Lombard speech but a bad estimate for the performance of audio-only speech recognition. Furthermore,

we propose to include Lombard speech in the training set to compensate the performance gap between

plain speech and Lombard speech in the training set.

Inspired by the idea of using temporal dependency to detect audio adversarial examples in [47], we

investigate the usage of audio-visual synchronisation as a detection method of adversarial attacks in

Chapter 7. The key idea is that the audio stream is highly correlated to the video of the mouth ROI. We

hypothesise that the synchronisation confidence score would be lower in adversarial than benign examples

and demonstrated that this could be used for detecting adversarial attacks. The proposed detection method

is evaluated on speech recognition attacks on models trained on the LRW and GRID datasets. Our

experimental results show that the proposed method could detect audio-visual adversarial attacks with

high accuracy.

8.2 Applications

Speech is the most commonly used human communication method and consists of an audio signal and the

corresponding mouth movements. Speech perception is also bimodal as demonstrated by the McGurk

effect [220] where the perception of a sound may change depending on the lip movements shown to

the observers. In addition, it has been shown that the addition of visual speech information to a word

recognition task performed by normal hearing adults is equivalent to increasing the signal-to-noise ratio

(SNR) by 15 dB compared to audio-only recognition [221]. Hence, one of the main applications of VSR

is to enhance the performance of ASR models in noisy environments. VSR models are not significantly

affected by acoustic noise†† and can be integrated into an audio-visual speech recognition (AVSR)

model to compensate for the performance drop of ASR models. Several AVSR architectures have been

proposed [51, 151, 33, 24, 171, 222, 223] which show that the improvement over ASR models is greater as

the noise level increases, i.e., the SNR is lower. The same VSR architectures can also be used to improve

the performance of audio-based models in a variety of applications like speech enhancement [224],

speech separation [58, 225], voice activity detection [226], active speaker detection [227] and speaker

diarisation [228].

†† Due to the Lombard effect [35] speakers adapt their speaking style in noisy environments. This affects the lip movements
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There is also a number of applications based exclusively on VSR. Silent Speech Interfaces (SSI) [229],

which can enable speech communication to take place when an audible speech signal is not available, can

be developed with the help of VSR systems. This means that a speaker would be able to mouth words

instead of vocalising them. This technology has the potential to transform the lives of speech impaired

people. Patients who have lost the ability to speak (aphonia) or have difficulty in speaking (dysphonia) due

to tracheostomy, laryngectomy, stroke or injury might find it hard to communicate with others. The use of

SSI can alleviate this by providing an alternative way of communication and at the same time reduce the

stress caused by the sudden loss of their voice. The use of SSI can also be useful in cases where speaking

is not allowed, e.g., in a meeting, and can provide privacy in public conversations.

VSR technology also opens up opportunities to automatically transcribe video content which was recorded

without audio, like silent movies, CCTV footage or video captured by older webcams, and would otherwise

require significant manual effort or might have even been impossible. It can also be used as a useful tool in

face forgery detection [230]. Most face manipulation approaches add inconsistencies in mouth movements,

which might not always be perceptible by humans, but they can easily be detected by properly trained

VSR models. Finally, there is a new form of VSR which has become popular recently and generates audio,

instead of text, directly from the input video [231, 232, 233, 234]. This is essentially a combination of a

standard VSR model with a text-to-speech model but has two important advantages: 1) It does not require

any transcribed dataset and can be trained with vast amounts of unlabelled audio-visual data, 2) It is faster

and can potentially be used in real-time applications as it removes the constraint of recognising a complete

word before generating the corresponding speech signal. This new approach is especially useful for audio

inpainting applications since it can automatically fill in audio gaps from video.

8.3 Challenges

Despite the great advances in VSR there are still a number of challenges that need to be solved before the

full potential of this technology can be achieved. First of all, visual ambiguities which arise from the fact

that different phonemes correspond to similar lip movements is one of the most important reasons for the

significant performance gap between ASR and VSR models. Designing VSR systems which can resolve

some of these ambiguities by relying more on the context, like the time masking augmentation proposed

but to a much less extent than the impact of noise to the acoustic signal.
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in this work, might close this gap. In addition, VSR systems are sensitive to visual noise like lighting

changes, occlusions, motion blur and compression. Reduced and/or mismatched resolution and frame rate

between training and test conditions can also affect the performance. There is some evidence that VSR

systems are robust to small or moderate amounts of noise and less robust to reduced resolution [235, 236]

but further studies are needed to establish the impact of each noise type.

Another challenge is that a VSR model should be person-independent and pose-invariant. However, it is

well known that deep networks rely heavily on texture [237]. This can potentially degrade the performance

since unknown test subjects and head pose can significantly affect the appearance of the mouth. This is

typically addressed by training the VSR models on a large number of subjects with varying poses. Some

preliminary works on pose-invariant [238] and subject-independent [239] VSR has shown that this can be

addressed in a more principled way and this is another area which deserves further attention. Similarly,

multi-view VSR [240, 241] can be beneficial but it is not clear yet which lip views are optimal and how

they should be combined. The availability of multiple cameras in meeting rooms, cars and in modern

smartphones opens up a new opportunity for improving VSR systems.

The vast majority of VSR systems have focused on plain English speech. However, it is known that

lip movements are affected by the context where speech is produced and the type of speech. There is

evidence that lip movements tend to increase in silent speech [242] and also when speech is produced

in noise (the Lombard effect) [41, 243]. Despite studies which show a performance drop when VSR

models [244, 29, 245, 208] are tested on such conditions this area still remains unexplored. Finally, the

development of non-English VSR systems which take into account the unique characteristics of each

language also remains an open challenge.

8.4 Ethical Considerations

It is important to note that VSR is a dual-use technology, which means it can have a positive impact on

society as well as negative. Although our objective is to build VSR systems that will be beneficial for

the society, like the applications mentioned above, this technology can also be misused. One example is

that it can be deployed for surveillance via CCTV or even with smartphone cameras which raises privacy

concerns. A potential side effect of this is that it might discourage people from speaking in public if they

believe that their conversation can be intercepted by anyone carrying a camera. Sophisticated surveillance
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using VSR technology might not be possible at the moment, especially via CCTV due to the low quality

of images compared to the high quality data used during training, but it should not be ignored. Cameras

and VSR systems are getting better so it might become a serious privacy concern rather soon.

Commercial applications of VSR technology are still at a very early stage. One of the very few examples

is a smartphone application which aims to help speech impaired patients communicate and it is currently

being trialled in UK NHS hospitals. This is being developed by Liopa [246] which also works on keyword

spotting from CCTV footage. Hence, we argue that appropriate government regulations about VSR

systems, which address the privacy concerns and potential misuse, are necessary at this early stage before

the technology is fully commercialised. This will allow the proper auditing of every new application

before it reaches the market and its risks and merits can be properly communicated to the users and

the public. Otherwise VSR systems may have the same fate as face recognition technology which

was commercialised without proper regulation being in place. As a consequence, a ban on using face

recognition was introduced in several cities [247, 248, 249] and some companies either stopped offering

such services or put restrictions on their use [250, 251, 252, 253] when the ethical concerns became

widely known.

It should also be pointed out that VSR technology might be biased against specific age groups, gender,

cultural backgrounds or non-native speakers. Most of the publicly available datasets have been collected

from TV programs, TED talks or YouTube videos. Hence, it is very likely that some groups are

underrepresented, e.g., younger people when data are collected from TV programs or older people when

data are collected from YouTube. Similarly, it is likely that people from specific cultural backgrounds or

non-native speakers are also underrepresented. This will lead to VSR models which are less accurate for

all these groups. Since demographic information is not available for any publicly available dataset used

for training VSR models it is not easy to verify if such biases exist. Recently, some datasets have been

released, like Casual Conversations [254], which contain such information so it might be possible to test

VSR models for potential biases. However, this does not alleviate the issue, it just reveals the existence of

bias. VSR models need to be trained on demographically diverse data including non-native speakers to

ensure similar performance across different user groups. This will lead to VSR systems whose accuracy is

not lower for some users because their age, gender, cultural background or accent is underrepresented in

the training data.
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8.5 Future Work

The central research topic of this thesis is how to leverage both audio and visual signals for better speech

recognition? This topic can be further extended along five different directions outlined below.

As discussed in in Chapter 3 and Chapter 4, there are still unsolved challenges in audio-visual fusions. A

first thought is to design an adaptive fusion mechanism that learns the weights of different data modality

based on the noise levels. Inspiring ideas can be found in works such as cross-modal alignment between

acoustic and visual encoders [23]. We should also notice that the noisy environments in most works are

artificially created by adding random noises to the audio signals, which can be different from the noisy

distribution in realistic scenarios. This issue can be potentially addressed by collecting noisy audio data

from various conditions. Besides, it is also interesting to distinguish how different types of background

noises can affect the performance of AVSR models. Furthermore, [255] introduced an additional loss to

penalise the differences of clean and noisy representations in multiple layers. Inspired by this work, it

would be interesting to investigate how much performance gains brings when a cumulative penalty is

applied.

Cross-modal learning is explored in Chapter 5, and we can further investigate whether cross-modal

distillation can improve the performance of audio-visual speech recognition models. As shown in

Chapter 5, cross-modal supervised learning can introduce benefits, but will self-supervised learning

between audio and visual signals still work positively? This is an interesting idea to investigate. Given

the extent of modern audio-visual corpora, we believe it would be promising to leverage self-supervised

learning towards other visual tasks such as emotion recognition and speaker recognition in the future.

Moreover, independently pre-training audio and visual models is complex, and it would be interesting to

develop end-to-end systems by jointly learning audio-visual representations like AV-HuBERT [256].

We have studied the Lombard effect influence on E2E audio-visual speech recognition in Chapter 6.

The empirical results showed that including Lombard speech in the training set can compensate for

the performance gap between non-Lombard speech and Lombard speech. Michelsanti et al. [245]

showed that the speech enhancement system trained with Lombard speech outperformed the one trained

with non-Lombard speech in terms of both estimated speech quality and estimated speech intelligibility.

Nonetheless, collecting speech in Lombard conditions is costly. It would be interesting to investigate how
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to reconstruct Lombard speech from a video of a spoken non-Lombard speech.

We have shown that the usage of audio-visual synchronisation could be considered as a detection of the

method for adversarial attacks in Chapter 7. To achieve high accuracy of detection, we would like to

investigate an approach that can effectively measure the correlation between audio and visual streams.

The consistency between audio and visual signal can be a key to extend our system to the detection against

fake videos.

The ability to perform multi-lingual analysis is also an attractive feature to add to our pipeline. Most

current VSR systems rely on visual speech datasets in Mandarin, English and Spanish, while the support

for other languages can be essential. How to tackle with the follow-up problem, e.g. the data sparseness

problems in low-resource corpora, is also worth considerations. A multilingual self-supervised VSR,

which sounds appealing and attractive, can be the pursuit of the next generation AVSR applications.
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