36,845 research outputs found

    Watermarking for multimedia security using complex wavelets

    Get PDF
    This paper investigates the application of complex wavelet transforms to the field of digital data hiding. Complex wavelets offer improved directional selectivity and shift invariance over their discretely sampled counterparts allowing for better adaptation of watermark distortions to the host media. Two methods of deriving visual models for the watermarking system are adapted to the complex wavelet transforms and their performances are compared. To produce improved capacity a spread transform embedding algorithm is devised, this combines the robustness of spread spectrum methods with the high capacity of quantization based methods. Using established information theoretic methods, limits of watermark capacity are derived that demonstrate the superiority of complex wavelets over discretely sampled wavelets. Finally results for the algorithm against commonly used attacks demonstrate its robustness and the improved performance offered by complex wavelet transforms

    Graded quantization for multiple description coding of compressive measurements

    Get PDF
    Compressed sensing (CS) is an emerging paradigm for acquisition of compressed representations of a sparse signal. Its low complexity is appealing for resource-constrained scenarios like sensor networks. However, such scenarios are often coupled with unreliable communication channels and providing robust transmission of the acquired data to a receiver is an issue. Multiple description coding (MDC) effectively combats channel losses for systems without feedback, thus raising the interest in developing MDC methods explicitly designed for the CS framework, and exploiting its properties. We propose a method called Graded Quantization (CS-GQ) that leverages the democratic property of compressive measurements to effectively implement MDC, and we provide methods to optimize its performance. A novel decoding algorithm based on the alternating directions method of multipliers is derived to reconstruct signals from a limited number of received descriptions. Simulations are performed to assess the performance of CS-GQ against other methods in presence of packet losses. The proposed method is successful at providing robust coding of CS measurements and outperforms other schemes for the considered test metrics

    Latency Analysis of Coded Computation Schemes over Wireless Networks

    Full text link
    Large-scale distributed computing systems face two major bottlenecks that limit their scalability: straggler delay caused by the variability of computation times at different worker nodes and communication bottlenecks caused by shuffling data across many nodes in the network. Recently, it has been shown that codes can provide significant gains in overcoming these bottlenecks. In particular, optimal coding schemes for minimizing latency in distributed computation of linear functions and mitigating the effect of stragglers was proposed for a wired network, where the workers can simultaneously transmit messages to a master node without interference. In this paper, we focus on the problem of coded computation over a wireless master-worker setup with straggling workers, where only one worker can transmit the result of its local computation back to the master at a time. We consider 3 asymptotic regimes (determined by how the communication and computation times are scaled with the number of workers) and precisely characterize the total run-time of the distributed algorithm and optimum coding strategy in each regime. In particular, for the regime of practical interest where the computation and communication times of the distributed computing algorithm are comparable, we show that the total run-time approaches a simple lower bound that decouples computation and communication, and demonstrate that coded schemes are Θ(log⁥(n))\Theta(\log(n)) times faster than uncoded schemes

    On Cooperative Beamforming Based on Second-Order Statistics of Channel State Information

    Full text link
    Cooperative beamforming in relay networks is considered, in which a source transmits to its destination with the help of a set of cooperating nodes. The source first transmits locally. The cooperating nodes that receive the source signal retransmit a weighted version of it in an amplify-and-forward (AF) fashion. Assuming knowledge of the second-order statistics of the channel state information, beamforming weights are determined so that the signal-to-noise ratio (SNR) at the destination is maximized subject to two different power constraints, i.e., a total (source and relay) power constraint, and individual relay power constraints. For the former constraint, the original problem is transformed into a problem of one variable, which can be solved via Newton's method. For the latter constraint, the original problem is transformed into a homogeneous quadratically constrained quadratic programming (QCQP) problem. In this case, it is shown that when the number of relays does not exceed three the global solution can always be constructed via semidefinite programming (SDP) relaxation and the matrix rank-one decomposition technique. For the cases in which the SDP relaxation does not generate a rank one solution, two methods are proposed to solve the problem: the first one is based on the coordinate descent method, and the second one transforms the QCQP problem into an infinity norm maximization problem in which a smooth finite norm approximation can lead to the solution using the augmented Lagrangian method.Comment: 30 pages, 9 figure

    Fluctuation Exchange Analysis of Superconductivity in the Standard Three-Band CuO2 Model

    Full text link
    The fluctuation exchange, or FLEX, approximation for interacting electrons is applied to study instabilities in the standard three-band model for CuO2 layers in the high-temperature superconductors. Both intra-orbital and near-neigbor Coulomb interactions are retained. The filling dependence of the d(x2-y2) transition temperature is studied in both the "hole-doped" and "electron-doped" regimes using parameters derived from constrained-occupancy density-functional theory for La2CuO4. The agreement with experiment on the overdoped hole side of the phase diagram is remarkably good, i.e., transitions emerge in the 40 K range with no free parameters. In addition the importance of the "orbital antiferromagnetic," or flux phase, charge density channel is emphasized for an understanding of the underdoped regime.Comment: REVTex and PostScript, 31 pages, 26 figures; to appear in Phys. Rev. B (1998); only revised EPS figures 3, 4, 6a, 6b, 6c, 7 and 8 to correct disappearance of some labels due to technical problem
    • 

    corecore