7,593 research outputs found

    Improving Semantic Composition with Offset Inference

    Get PDF
    Count-based distributional semantic models suffer from sparsity due to unobserved but plausible co-occurrences in any text collection. This problem is amplified for models like Anchored Packed Trees (APTs), that take the grammatical type of a co-occurrence into account. We therefore introduce a novel form of distributional inference that exploits the rich type structure in APTs and infers missing data by the same mechanism that is used for semantic composition.Comment: to appear at ACL 2017 (short papers

    Insights into Analogy Completion from the Biomedical Domain

    Get PDF
    Analogy completion has been a popular task in recent years for evaluating the semantic properties of word embeddings, but the standard methodology makes a number of assumptions about analogies that do not always hold, either in recent benchmark datasets or when expanding into other domains. Through an analysis of analogies in the biomedical domain, we identify three assumptions: that of a Single Answer for any given analogy, that the pairs involved describe the Same Relationship, and that each pair is Informative with respect to the other. We propose modifying the standard methodology to relax these assumptions by allowing for multiple correct answers, reporting MAP and MRR in addition to accuracy, and using multiple example pairs. We further present BMASS, a novel dataset for evaluating linguistic regularities in biomedical embeddings, and demonstrate that the relationships described in the dataset pose significant semantic challenges to current word embedding methods.Comment: Accepted to BioNLP 2017. (10 pages

    Flow-Guided Feature Aggregation for Video Object Detection

    Full text link
    Extending state-of-the-art object detectors from image to video is challenging. The accuracy of detection suffers from degenerated object appearances in videos, e.g., motion blur, video defocus, rare poses, etc. Existing work attempts to exploit temporal information on box level, but such methods are not trained end-to-end. We present flow-guided feature aggregation, an accurate and end-to-end learning framework for video object detection. It leverages temporal coherence on feature level instead. It improves the per-frame features by aggregation of nearby features along the motion paths, and thus improves the video recognition accuracy. Our method significantly improves upon strong single-frame baselines in ImageNet VID, especially for more challenging fast moving objects. Our framework is principled, and on par with the best engineered systems winning the ImageNet VID challenges 2016, without additional bells-and-whistles. The proposed method, together with Deep Feature Flow, powered the winning entry of ImageNet VID challenges 2017. The code is available at https://github.com/msracver/Flow-Guided-Feature-Aggregation
    • …
    corecore