852 research outputs found

    Improving search order for reachability testing in timed automata

    Get PDF
    Standard algorithms for reachability analysis of timed automata are sensitive to the order in which the transitions of the automata are taken. To tackle this problem, we propose a ranking system and a waiting strategy. This paper discusses the reason why the search order matters and shows how a ranking system and a waiting strategy can be integrated into the standard reachability algorithm to alleviate and prevent the problem respectively. Experiments show that the combination of the two approaches gives optimal search order on standard benchmarks except for one example. This suggests that it should be used instead of the standard BFS algorithm for reachability analysis of timed automata

    Setting Parameters for Biological Models With ANIMO

    Get PDF
    ANIMO (Analysis of Networks with Interactive MOdeling) is a software for modeling biological networks, such as e.g. signaling, metabolic or gene networks. An ANIMO model is essentially the sum of a network topology and a number of interaction parameters. The topology describes the interactions between biological entities in form of a graph, while the parameters determine the speed of occurrence of such interactions. When a mismatch is observed between the behavior of an ANIMO model and experimental data, we want to update the model so that it explains the new data. In general, the topology of a model can be expanded with new (known or hypothetical) nodes, and enables it to match experimental data. However, the unrestrained addition of new parts to a model causes two problems: models can become too complex too fast, to the point of being intractable, and too many parts marked as "hypothetical" or "not known" make a model unrealistic. Even if changing the topology is normally the easier task, these problems push us to try a better parameter fit as a first step, and resort to modifying the model topology only as a last resource. In this paper we show the support added in ANIMO to ease the task of expanding the knowledge on biological networks, concentrating in particular on the parameter settings

    Efficient Model Checking: The Power of Randomness

    Get PDF

    LTSmin: high-performance language-independent model checking

    Get PDF
    In recent years, the LTSmin model checker has been extended with support for several new modelling languages, including probabilistic (Mapa) and timed systems (Uppaal). Also, connecting additional language front-ends or ad-hoc state-space generators to LTSmin was simplified using custom C-code. From symbolic and distributed reachability analysis and minimisation, LTSmin’s functionality has developed into a model checker with multi-core algorithms for on-the-fly LTL checking with partial-order reduction, and multi-core symbolic checking for the modal μ calculus, based on the multi-core decision diagram package Sylvan.\ud In LTSmin, the modelling languages and the model checking algorithms are connected through a Partitioned Next-State Interface (Pins), that allows to abstract away from language details in the implementation of the analysis algorithms and on-the-fly optimisations. In the current paper, we present an overview of the toolset and its recent changes, and we demonstrate its performance and versatility in two case studies

    Time and Cost Optimization of Cyber-Physical Systems by Distributed Reachability Analysis

    Get PDF

    Why Liveness for Timed Automata Is Hard, and What We Can Do About It

    Get PDF
    The liveness problem for timed automata asks if a given automaton has a run passing infinitely often through an accepting state. We show that unless P=NP, the liveness problem is more difficult than the reachability problem; more precisely, we exhibit a family of automata for which solving the reachability problem with the standard algorithm is in P but solving the liveness problem is NP-hard. This leads us to revisit the algorithmics for the liveness problem. We propose a notion of a witness for the fact that a timed automaton violates a liveness property. We give an algorithm for computing such a witness and compare it with the existing solutions
    • …
    corecore